Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 126 papers

Inhibiting the IRE1α Axis of the Unfolded Protein Response Enhances the Antitumor Effect of AZD1775 in TP53 Mutant Ovarian Cancer.

  • Rourou Xiao‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Targeting the G2/M checkpoint mediator WEE1 has been explored as a novel treatment strategy in ovarian cancer, but mechanisms underlying its efficacy and resistance remains to be understood. Here, it is demonstrated that the WEE1 inhibitor AZD1775 induces endoplasmic reticulum stress and activates the protein kinase RNA-like ER kinase (PERK) and inositol-required enzyme 1α (IRE1α) branches of the unfolded protein response (UPR) in TP53 mutant (mtTP53) ovarian cancer models. This is facilitated through NF-κB mediated senescence-associated secretory phenotype. Upon AZD1775 treatment, activated PERK promotes apoptotic signaling via C/EBP-homologous protein (CHOP), while IRE1α-induced splicing of XBP1 (XBP1s) maintains cell survival by repressing apoptosis. This leads to an encouraging synergistic antitumor effect of combining AZD1775 and an IRE1α inhibitor MKC8866 in multiple cell lines and preclinical models of ovarian cancers. Taken together, the data reveal an important dual role of the UPR signaling network in mtTP53 ovarian cancer models in response to AZD1775 and suggest that inhibition of the IRE1α-XBP1s pathway may enhance the efficacy of AZD1775 in the clinics.


The interactome and spatial redistribution feature of Ca2+ receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion.

  • Tao Li‎ et al.
  • Cell death & disease‎
  • 2018‎

Numerous studies have shown that calmodulin (CaM) is a major regulator of calcium-dependent signaling, which regulates cell proliferation, programmed cell death, and autophagy in cancer. However, limited information is available on mechanisms underlying the effect of CaM on the invasive property of glioblastoma multiforme (GBM) cells, especially with respect to invadopodia formation. In this study, we find that CaM serves as a prognostic factor for GBM, and it is strongly associated with the invasive nature of this tumor. Results of preliminary experiments indicated that CaM concentration was significantly correlated with the invasive capacity of and invadopodia formation by different GBM cell lines. CaM inhibition via a small hairpin RNA or a pharmacological inhibitor significantly disrupted invadopodia formation and MMP activity and downregulated vimentin expression. Moreover, CaM knockdown exerted a strong anti-invasive effect on GBM in vivo. Interestingly, epidermal growth factor treatment promoted CaM redistribution from the nucleus to the cytoplasm, eventually activating invadopodia-associated proteins by binding to them via their cytosolic-binding sites. Moreover, CaM inhibition suppressed the activation of invadopodia-associated proteins. Thus, our findings provide a novel therapeutic strategy to impede GBM invasion by inhibiting invadopodia formation, and shed light on the spatial organization of CaM signals during GBM invasion.


Discovery of N-(3-(5-((3-acrylamido-4-(morpholine-4-carbonyl)phenyl)amino)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-2-methylphenyl)-4-(tert-butyl)benzamide (CHMFL-BTK-01) as a highly selective irreversible Bruton's tyrosine kinase (BTK) inhibitor.

  • Qianmao Liang‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

Currently there are several irreversible BTK inhibitors targeting Cys481 residue under preclinical or clinical development. However, most of these inhibitors also targeted other kinases such as BMX, JAK3, and EGFR that bear the highly similar active cysteine residues. Through a structure-based drug design approach, we discovered a highly potent (IC50: 7 nM) irreversible BTK inhibitor compound 9 (CHMFL-BTK-01), which displayed a high selectivity profile in KINOMEscan (S score (35) = 0.00) among 468 kinases/mutants at the concentration of 1 μM. Compound 9 completely abolished BMX, JAK3 and EGFR's activity. Both X-ray crystal structure and cysteine-serine mutation mediated rescue experiment confirmed 9's irreversible binding mode. 9 also potently inhibited BTK Y223 auto-phosphorylation (EC50: <30 nM), arrested cell cycle in G0/G1 phase and induced apoptosis in U2932 and Pfeiffer cells. We believe these features would make 9 a good pharmacological tool to study the BTK related pathology.


miR-410 acts as an oncogene in colorectal cancer cells by targeting dickkopf-related protein 1 via the Wnt/β-catenin signaling pathway.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2019‎

Colorectal cancer (CRC) is a common malignancy with high morbidity. MicroRNAs (miRNAs or miRs) have been demonstrated to be critical post-transcriptional regulators in tumorigenesis. The current study aimed to investigate the effect of miR-410 on the proliferation and metastasis of CRC. The expression of miR-410 was examined in CRC cell lines. SW-480 and HCT-116 CRC cell lines were employed and transfected with miR-410 inhibitor or miR-410 mimics. The association between miR-410 and dickkopf-related protein 1 (DKK-1) was verified by luciferase reporter assay. Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Cell migration and invasion capacity were determined by Transwell assay. The protein level of DKK1, β-catenin and phosphorylated glycogen synthase kinase-3β (pGSK-3β) were analyzed by western blotting. miR-410 was revealed to be upregulated in CRC cell lines. Further studies identified DKK-1 as a direct target of miR-410. In addition, knockdown of miR-410 promoted the expression of DKK, inhibited CRC cell proliferation, migration and invasion capacity, and induced cell apoptosis, while overexpression of miR-410 reversed these results. miR-410 silencing also decreased β-catenin and pGSK-3β levels. The current study indicated that miR-410 negatively regulates the expression of DKK-1 in vitro. miR-410 promotes malignancy phenotypes in CRC cell lines. This regulatory effect of miR-410 may be associated with the Wnt/β-catenin signaling pathway. Therefore, miR-410 could be used as a biomarker for predicting the progression of CRC.


Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells.

  • Weiqi Hong‎ et al.
  • Cellular & molecular immunology‎
  • 2022‎

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Long noncoding RNA KCNMA1-AS1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by activating the SMAD9 signaling pathway.

  • Zhaoyi Mai‎ et al.
  • Biology direct‎
  • 2023‎

The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.


Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release.

  • Kefeng Zhai‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2021‎

During the traumatic brain injury (TBI), improved expression of circulatory miR-21 serves as a diagnostic feature. Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and blood-brain barrier (BBB) permeability, reduce nerve apoptosis, restore neural function and ameliorate TBI. We evaluated the role of macrophage derived exosomes-miR-21 (M-Exos-miR-21) in disrupting BBB, deteriorating TBI, and Rg1 interventions. IL-1β-induced macrophages (IIM)-Exos-miR-21 can activate NF-κB signaling pathway and induce the expressions of MMP-1, -3 and -9 and downregulate the levels of tight junction proteins (TJPs) deteriorating the BBB. Rg1 reduced miR-21-5p content in IIM-Exos (RIIM-Exos). The interaction of NMIIA-HSP90 controlled the release of Exos-miR-21, this interaction was restricted by Rg1. Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain, enhancing TIMP3 protein expression, MMPs proteolysis, and restricting TJPs degradation thus protected the BBB integrity. Conclusively, Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.


Serine Phosphorylation of IRS1 Correlates with Aβ-Unrelated Memory Deficits and Elevation in Aβ Level Prior to the Onset of Memory Decline in AD.

  • Wei Wang‎ et al.
  • Nutrients‎
  • 2019‎

The biological effects of insulin signaling are regulated by the phosphorylation of insulin receptor substrate 1 (IRS1) at serine (Ser) residues. In the brain, phosphorylation of IRS1 at specific Ser sites increases in patients with Alzheimer's disease (AD) and its animal models. However, whether the activation of Ser sites on neural IRS1 is related to any type of memory decline remains unclear. Here, we show the modifications of IRS1 through its phosphorylation at etiology-specific Ser sites in various animal models of memory decline, such as diabetic, aged, and amyloid precursor protein (APP) knock-in NL-G-F (APPKINL-G-F) mice. Substantial phosphorylation of IRS1 at specific Ser sites occurs in type 2 diabetes- or age-related memory deficits independently of amyloid-β (Aβ). Furthermore, we present the first evidence that, in APPKINL-G-F mice showing Aβ42 elevation, the increased phosphorylation of IRS1 at multiple Ser sites occurs without memory impairment. Our findings suggest that the phosphorylation of IRS1 at specific Ser sites is a potential marker of Aβ-unrelated memory deficits caused by type 2 diabetes and aging; however, in Aβ-related memory decline, the modifications of IRS1 may be a marker of early detection of Aβ42 elevation prior to the onset of memory decline in AD.


Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response.

  • Xing He‎ et al.
  • Cell transplantation‎
  • 2021‎

The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.


CD27-Expressing Xenoantigen-Expanded Human Regulatory T Cells Are Efficient in Suppressing Xenogeneic Immune Response.

  • Lu Cao‎ et al.
  • Cell transplantation‎
  • 2023‎

Clinically, xenotransplantation often leads to T-cell-mediated graft rejection. Immunosuppressive agents including polyclonal regulatory T cells (poly-Tregs) promote global immunosuppression, resulting in serious infections and malignancies in patients. Xenoantigen-expanded Tregs (xeno-Tregs) have become a promising immune therapy strategy to protect xenografts with fewer side effects. In this study, we aimed to identify an efficient and stable subset of xeno-Tregs. We enriched CD27+ xeno-Tregs using cell sorting and evaluated their suppressive functions and stability in vitro via mixed lymphocyte reaction (MLR), real-time polymerase chain reaction, inflammatory induction assay, and Western blotting. A STAT5 inhibitor was used to investigate the relationship between the function and stability of CD27+ xeno-Tregs and the JAK3-STAT5 signaling pathway. A humanized xenotransplanted mouse model was used to evaluate the function of CD27+ xeno-Tregs in vivo. Our results show that CD27+ xeno-Tregs express higher levels of Foxp3, cytotoxic T-lymphocyte antigen-4 (CTLA4), and Helios and lower levels of interleukin-17 (IL-17) than their CD27- counterparts. In addition, CD27+ xeno-Tregs showed enhanced suppressive function in xeno-MLR at ratios of 1:4 and 1:16 of Tregs:responder cells. Under inflammatory conditions, a lower percentage of CD27+ xeno-Tregs secretes IL-17 and interferon-γ (IFN-γ). CD27+ xeno-Tregs demonstrated an upregulated JAK3-STAT5 pathway compared with that of CD27- xeno-Tregs and showed decreased Foxp3, Helios, and CTLA4 expression after addition of STAT5 inhibitor. Mice that received porcine skin grafts showed a normal tissue phenotype and less leukocyte infiltration after reconstitution with CD27+ xeno-Tregs. Taken together, these data indicate that CD27+ xeno-Tregs may suppress immune responses in a xenoantigen-specific manner, which might be related to the activation of the JAK3-STAT5 signaling pathway.


miR‑193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma.

  • Jinjian Gao‎ et al.
  • Oncology reports‎
  • 2020‎

Emerging evidence has indicated that microRNAs (miRs) are involved in the malignant behavior of cancer. The present study explored the role of miR‑193b in the development and metastasis of osteosarcoma. Compared with F4 osteosarcoma cells, which have a relatively low metastatic potential, highly metastatic F5M2 cells exhibited a lower expression of miR‑193b. Furthermore, miR‑193b exerted negative effects on cell proliferation, colony formation, cell cycle progression, migration and invasion, and induced apoptosis. In vivo studies revealed negative influences of miR‑193b on tumorigenesis and metastasis. The tumor‑suppressive role of miR‑193b was achieved by targeting KRAS and stathmin 1 (STMN1). Notably, overexpression of KRAS and STMN1 attenuated the miR‑193b‑induced inhibition of malignant behaviors. There was a double‑negative regulatory loop between MYC and miR‑193b, with MYC inhibiting miR‑193b expression by directly binding to its promoter region and miR‑193b negatively influencing MYC expression indirectly through some unknown mechanism. Collectively, these findings indicated that miR‑193b may serve a tumor suppressive role in osteosarcoma by targeting KRAS and STMN1. The double‑negative regulatory loop between MYC and miR‑193b may contribute to the sustained upregulation of MYC, the downregulation of miR‑193b, and to the subsequently enhanced expression of KRAS and STMN1, which may eventually lead to the development and metastasis of osteosarcoma.


Associations between autophagy, the ubiquitin-proteasome system and endoplasmic reticulum stress in hypoxia-deoxygenation or ischemia-reperfusion.

  • Tao Fan‎ et al.
  • European journal of pharmacology‎
  • 2016‎

The activation of autophagy has been demonstrated to exert protective roles during hypoxia-reoxygenation (H/R)-induced brain injuries. This study aimed to investigate whether and how preconditioning with a proteasome inhibitor (MG-132), a proteasome promoter (Adriamycin, ADM), an autophagy inhibitor (3-methyladenine, 3-MA) and an autophagy promoter (Rapamycin, Rap) affected endoplasmic reticulum stress (ERS), the ubiquitin-proteasome system (UPS), autophagy, inflammation and apoptosis. Ubiquitin protein and 26S proteasome activity levels were decreased by MG-132 pretreatment but increased by ADM pretreatment at 2h, 4h and 6h following H/R treatment. MG-132 pretreatment led to the increased expression of autophagy-related genes, ER stress-associated genes and IκB but decreased the expression levels of NF-κB and caspase-3. ADM pretreatment led to the decreased expression of autophagy-related genes, ERS-associated genes and IκB but increased the expression of NF-κB and caspase-3. Pretreatment with 3-MA reduced the expression of autophagy-related genes, autophagy and UPS co-related genes, as well as apoptosis-related although the latter was increased by Rap pretreatment at 2h, 4h and 6h following H/R treatment. In vivo, pretreatment of rats with ADM, MG-132, 3-MA or Rap followed by ischemia-reperfusion (I/R) treatment resulted in similar changes. Proteasome inhibition preconditioning strengthened autophagy and ER stress but decreased apoptosis and inflammation. Autophagy promotion preconditioning exhibited similar changes. The combination of a proteasome inhibitor and an autophagy promoter might represent a new possible therapy to treat H/R or I/R injury-related diseases.


NGF Signaling Interacts With the Hippo/YAP Pathway to Regulate Cervical Cancer Progression.

  • Lijun Wang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Nerve growth factor (NGF) is increasingly implicated in cervical cancer progression, but its mechanism in cervical cancer is unclear. Here, studies demonstrate that NGF inhibits the Hippo signaling pathway and activates Yes-associated protein (YAP) to induce cervical cancer cell proliferation and migration. Our results suggested that stimulation of NGF promoted cell growth and migration and activated YAP in HeLa and C-33A cell lines. The expression of YAP target genes (CTGF and ANKRD1) was upregulated after NGF treatment. The NGF inhibitor Ro 08-2750 and siRNA-mediated NGF receptor gene silencing suppressed HeLa and C-33A cells proliferation and migration, activated large suppressor kinase 1 (LATS1) kinase activity, and suppressed YAP function. In addition, the expression of YAP target genes (CTGF and ANKRD1) was suppressed by Ro 08-2750 treatment in HeLa and C-33A cells. Interestingly, proliferation was significantly higher in NGF-treated cells than in control cells, and this effect was completely reversed by the YAP small molecule inhibitor-verteporfin. Furthermore, the mouse xenograft model shows that NGF regulates YAP oncogenic activity in vivo. Mechanistically, NGF stimulation inactivates LATS1 and activates YAP, and NGF inhibition was found to induce large suppressor kinase 1 (LATS1) phosphorylation. Taken together, these data provide the first direct evidence of crosstalk between the NGF signaling and Hippo cancer pathways, an interaction that affects cervical cancer progression. Our study indicates that combined targeting of the NGF signaling and the Hippo pathway represents a novel therapeutic strategy for treatment of cervical cancer.


Inhibitory Effects of Inonotus obliquus Polysaccharide on Inflammatory Response in Toxoplasma gondii-Infected RAW264.7 Macrophages.

  • Kexin Yan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Our previous reports have shown that Inonotus obliquus polysaccharide (IOP) has protective effects against Toxoplasma gondii (T. gondii) infection in vivo. The aim of the present research is to explore the in vitro anti-inflammatory effects of IOP and its mechanism in RAW264.7 macrophages infected by T. gondii. In this study, it is indicated that IOP decreased the excessive secretion of inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-4, and IL-6 in T. gondii-infected RAW264.7 macrophages. IOP effectively suppressed the mRNA expression of these cytokines and chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). Moreover, IOP inhibited the phosphorylation of inhibitor kappa B kinase α/β (IKKα/β), inhibitor κBα (IκBα), p65 in nuclear factor-kappa B (NF-κB) signaling pathway and p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) in mitogen-activated protein kinases (MAPKs) signaling pathway. Meantime, IOP prevented NF-κB p65 and c-Jun translocation from the cytoplasm to the nucleus. Further, IOP downregulated the protein expression of toll-like receptor 2 (TLR2) and TLR4 in T. gondii-infected RAW264.7 macrophages. The above results suggest that IOP can inhibit the inflammatory response infected with T. gondii via regulating TLR2/TLR4-NF-κB/MAPKs pathways and exerting its anti-T. gondii role in vitro.


MAPK-RAP1A Signaling Enriched in Hepatocellular Carcinoma Is Associated With Favorable Tumor-Infiltrating Immune Cells and Clinical Prognosis.

  • Hailin Li‎ et al.
  • Frontiers in oncology‎
  • 2021‎

MAPK-RAP1A signaling, which is involved in cancer progression, remains to be defined. Upregulation of MAPK-RAP1A signaling accounts for most cancers that harbor high incident rate, such as non-small cell lung cancer (NSCLC) and pancreatic cancer, especially in hepatocellular carcinoma (HCC). MAPK-RAP1A signaling plays an important function as clinical diagnosis and prognostic value in cancers, and the role of MAPK-RAP1A signaling related with immune infiltration for HCC should be elucidated.


Inhibitory effects and mechanisms of proanthocyanidins against enterovirus 71 infection.

  • Jiqin Sun‎ et al.
  • Virus research‎
  • 2023‎

Proanthocyanidins (PC), a natural flavonoid compound, was reported to possess a variety of pharmacological activities such as anti-tumor and anti-viral effects. In this study, the anti-Enterovirus 71 (EV71) activities and mechanisms of PC were investigated both in vitro and in vivo. The results showed that PC possessed anti-EV71 activities in different cell lines with low toxicity. PC can block both the adsorption and entry processes of EV71 via directly binding to virus VP1 protein. PC may competitively interfere with the binding of VP1 to its receptor SCARB2. PC can also regulate three different MAPK signaling pathways to reduce EV71 infection and attenuate virus induced inflammatory responses. Importantly, intramuscular therapy of EV71-infected mice with PC markedly improved their survival and attenuated the severe clinical symptoms. Therefore, the natural compound PC has potential to be developed into a novel anti-EV71 agent targeting viral VP1 protein and MAPK pathways.


Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment.

  • Chenfei Zhou‎ et al.
  • Cell death and differentiation‎
  • 2021‎

Clinical response to immunotherapy is closely associated with the immunosuppressive tumour microenvironment (TME), and influenced by the dynamic interaction between tumour cells and lymphatic endothelial cells (LECs). Here, we show that high levels of miR-142-5p positively correlate with indoleamine 2,3-dioxygenase (IDO) expression in tumour-associated lymphatic vessels in advanced cervical squamous cell carcinoma (CSCC). The miR-142-5p is transferred by CSCC-secreted exosomes into LECs to exhaust CD8+ T cells via the up-regulation of lymphatic IDO expression, which was abrogated by an IDO inhibitor. Mechanistically, miR-142-5p directly down-regulates lymphatic AT-rich interactive domain-containing protein 2 (ARID2) expression, inhibits DNA methyltransferase 1 (DNMT1) recruitment to interferon (IFN)-γ promoter, and enhances IFN-γ transcription by suppressing promoter methylation, thereby leading to elevated IDO activity. Furthermore, increased serum exosomal miR-142-5p levels and the consequent IDO activity positively correlate with CSCC progression. In conclusion, exosomes secreted by CSCC cells deliver miR-142-5p to LECs and induce IDO expression via ARID2-DNMT1-IFN-γ signalling to suppress and exhaust CD8+ T cells. Our study suggests that LECs act as an integral component of the immune checkpoint(s) in the TME and may serve as a potential new target for CSCC diagnosis and treatment.


The Joint Effect of a Combination of Components From the Fruit of Crataegus pinnatifida Bge. Var. major N.E. Br. and the Root of Salvia miltiorrhiza Bge. With Exercises on Swimming in Focal Cerebral Infraction in Rat.

  • Shilan Ding‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Background: In our previous study, we found that the combination of a traditional Chinese medicine (TCM) and swimming could prevent atherosclerosis through a synergistic interaction. However, whether the combined application of active components from the fruit of Crataegus pinnatifida Bge. Var. major N.E. Br. and the root of Salvia miltiorrhiza Bge. (CPSM) and swimming has been effective in the prevention and treatment of focal cerebral infraction remained unclear. This work aimed to conduct detailed investigation on the joint effects of CPSM extract with swimming on focal cerebral infraction in rats and its underlying mechanisms. Method: A photochemical method of the combination of Rose Bengal (RB) injection and cold-light source irradiation was performed to establish the rat focal cerebral thrombosis model. The pathological changes of the brain were observed by a DCP-7030 laser multifunction machine, and the protein levels of von Willebrand factor (vWF), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were detected by Western blotting. Blood samples were collected to assay tissue plasminogen activator (t-PA), plasminogen activator inhibitor type-1 (PAI-1), endothelin-1 (ET-1), 6-keto-prostaglandin F1α (6-keto-PGF1α), and thromboxane B2 (TXB2). Finally, the gene expression of t-PA, PAI-1, and ICAM-1 in human umbilical vein endothelial cells (HUVECs) stimulated by tumor necrosis factor-α (TNF-α) was assayed via real-time (RT) quantitative PCR (qPCR). Results: The joint effects of CPSM extract and swimming demonstrated significant interactions, which including increased blood perfusion, increased serum t-PA and 6-keto-PGF1α, decreased serum PAI-1 and TXB2, decreased protein levels of vWF, VCAM-1 and ICAM-1, and decreased ICAM-1 gene expression. Conclusion: This research demonstrated that the combined therapy of CP and SM extracts with swimming could prevent focal cerebral infraction through interactions on the regulation of vascular endothelial functions and inflammatory factors. It stresses the promising effects of the drugs and shear stress of blood flow in prevention and treatment of thrombosis. The mechanism may be related to regulating the protein expression of vWF, VCAM-1, and ICAM-1, and downregulating the gene expression of ICAM-1.


Chemical inhibition of mitochondrial fission via targeting the DRP1-receptor interaction.

  • Jun Yang‎ et al.
  • Cell chemical biology‎
  • 2023‎

Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.


MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer.

  • Qin Liu‎ et al.
  • Oncology reports‎
  • 2016‎

MicroRNAs (miRNAs) function as genetic modulators that regulate gene expression and are involved in a wide range of biological roles, including tumor cell migration and invasion. In the present study, we demonstrated that the migration and invasion activity in MDA-MB-231 breast cancer cells could be directly influenced by altering miR-146a expression. The expression of RhoA and miR-146a in the breast cancer cells showed an inverse correlation. Upregulation of miR-146a in the MDA-MB‑231 breast cancer cells by transfection of miR-146a mimics resulted in decreased RhoA protein levels. Conversely, downregulation of miR-146a by transfection of miR-146a inhibitor resulted in increased RhoA protein levels. To confirm the fact that RhoA is a potential target of miR-146a, luciferase reporter containing the RhoA 3' untranslated region (3'UTR) was constructed. The results demonstrated that the luciferase reporter activity was reduced after overexpression of miR-146a. Moreover, the luciferase reporter which was constructed with the RhoA 3'UTR mutant did not show significantly altered luciferase reporter activity. Furthermore, after treatment with the RhoA inhibitor exoenzyme C3 transferase protein, the migratory capacity of the MDA-MB-231 cells was not significantly altered even though the amount of miR-146a was changed. Our results indicate that miR-146a functions as a tumor suppressor in breast cancer cells. Downregulation of the expression of miR-146a increased the migration of MDA-MB-231 cells, due to the upregulation of RhoA expression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: