Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 50 papers out of 50 papers

Kai-Xin-San protects against mitochondrial dysfunction in Alzheimer's disease through SIRT3/NLRP3 pathway.

  • ShiJie Su‎ et al.
  • Chinese medicine‎
  • 2023‎

Kai-Xin-San (KXS) has been reported to have a good curative impact on dementia. The purpose of the study was to determine whether KXS might ameliorate cognitive deficits in APP/PS1 mice and to evaluate its neuroprotective mechanism.


Inhibition of STAT3- and MAPK-dependent PGE2 synthesis ameliorates phagocytosis of fibrillar β-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells.

  • Gen-Lin He‎ et al.
  • Journal of neuroinflammation‎
  • 2016‎

Prostaglandin E2 (PGE2)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE2 in Alzheimer's disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar β-amyloid (fAβ) in microglial cells exposed to EMF are poorly understood. Given the important role of PGE2 in neural physiopathological processes, we investigated the PGE2-related signaling mechanism in the immunomodulatory phagocytosis of EMF-stimulated N9 microglial cells (N9 cells).


Promotion of Differentiating Bone Marrow Mesenchymal Stromal Cells (BMSCs) into Cardiomyocytes via HCN2 and HCN4 Cotransfection.

  • Xue Luo‎ et al.
  • BioMed research international‎
  • 2021‎

Investigation of the influences HCN2 and HCN4 has on bone marrow mesenchymal stromal cells (BMSCs) on cardiomyocyte differentiation.


Construction and Characterization of Adenovirus Vectors Encoding Aspartate-β-Hydroxylase to Preliminary Application in Immunotherapy of Hepatocellular Carcinoma.

  • Yujiao Zhou‎ et al.
  • Journal of immunology research‎
  • 2018‎

Dendritic cells (DCs) harboring tumor-associated antigen are supposed to be a potential immunotherapy for hepatocellular carcinoma (HCC). Aspartate-β-hydroxylase (AAH), an overexpressed tumor-associated cell surface protein, is considered as a promising biomarker and therapeutic target for HCC. In this study, we constructed adenovirus vector encoding AAH gene by gateway recombinant cloning technology and preliminarily explored the antitumor effects of DC vaccines harboring AAH. Firstly, the total AAH mRNA was extracted from human HCC tissues; the cDNA was amplified by RT-PCR, verified, and sequenced after TA cloning. Gateway technology was used and the obtained 18T-AAH was used as a substrate, to yield the final expression vector Ad-AAH-IRES2-EGFP. Secondly, bone marrow-derived DCs were infected by Ad-AAH-IRES2-EGFP to yield AAH-DC vaccines. Matured DCs were demonstrated by increased expression of CD11c, CD80, and MHC-II costimulatory molecules. A dramatically cell-killing effect of T lymphocytes coculturing with AAH-DCs on HepG2 HCC cell line was demonstrated by CCK-8 and FCM assays in vitro. More importantly, in an animal experiment, the lysis effect of cytotoxic T lymphocytes (CTLs) on HepG2 cells in the AAH-DC group was stronger than that in the control groups. In conclusion, the gateway recombinant cloning technology is a powerful method of constructing adenovirus vector, and the product Ad-AAH-IRES2-EGFP may present as a potential candidate for DC-based immunotherapy of HCC.


Δ12 fatty acid desaturase gene from Geotrichum candidum in cheese: molecular cloning and functional characterization.

  • Xue Luo‎ et al.
  • FEBS open bio‎
  • 2019‎

Soft cheese with white rind lacks essential fatty acids (EFAs), and as a result its long-term consumption may lead to various kinds of cardiovascular and cerebrovascular diseases, such as hyperlipidemia, hypertension, and atherosclerosis. Geotrichum candidum is a dimorphic yeast that plays an important role in the ripening of mold cheese. A gene coding for Δ12 fatty acid desaturase, a critical bifunctional enzyme desaturating oleic acid (OA) and linoleic acid (LA) to produce LA and α-linolenic acid (ALA), respectively, was isolated from G. candidum, and then cloned and heterologously expressed in Saccharomyces cerevisiae. This gene, named GcFADS12, had an open reading frame of 1257 bp and codes for a protein of 419 amino acids with a predicted molecular mass of 47.5 kDa. Characterization showed that GcFADS12 had the ability to convert OA to LA and LA to ALA, and the conversion rates for OA and LA were 20.40 ± 0.66% and 6.40 ± 0.57%, respectively. We also found that the protein product of GcFADS12 catalyzes the conversion of the intermediate product (LA) to ALA by addition of OA as the sole substrate. The catalytic activity of GcFADS12 on OA and LA was unaffected by fatty acid concentrations. Kinetic analysis revealed that GcFADS12 had stronger affinity for the OA than for the LA substrate. This study offers a solid basis for improving the production of EFAs by G. candidum in cheese.


Purification, Structural Characteristics, and Biological Activities of Exopolysaccharide Isolated From Leuconostoc mesenteroides SN-8.

  • Junrui Wu‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

In this study, a novel exopolysaccharide (EPS) was extracted from Leuconostoc mesenteroides Shen Nong's (SN)-8 which can be obtained from Dajiang. After the purification step, EPS-8-2 was obtained with molecular weights of 1.46 × 105 Da. The structural characterization of EPS indicated that the EPS belonged to the class polysaccharide, mainly composed of glucan and also contained certain mannose residues that were found to be connected by α-1,6 glycosidic bonds. Moreover, the results demonstrated that EPS displayed a significant capacity to scavenge free radical to some extent, and this anti-oxidant potential was found to be concentration dependent. The results further revealed that EPS displayed a significant inhibitory potential on the growth of HepG2 cells by promoting apoptosis and induced cell cycle arrest in G1 and G2 phases. Overall, these results suggested that EPS can be explored as a possible anti-cancer agent.


Investigation Of Small Molecular Substances As Potential Biomarkers For Discrimination Of Gastric Tumor.

  • Jianyong Zhang‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Gastric tumor (GT) is associated with high morbidity and mortality, with surgery among the most effective treatment methods. Accurate interoperative determination of the tumor margin is crucial.


Cytotoxic effects of dental prosthesis grinding dust on RAW264.7 cells.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Respiratory diseases, including pulmonary fibrosis, silicosis, and allergic pneumonia, can be caused by long-term exposure to dental prosthesis grinding dust. The extent of the toxicity and pathogenicity of exposure to PMMA dust, Vitallium dust, and dentin porcelain dust differs. The dust from grinding dental prosthesis made of these three materials was characterized in terms of morphology, particle size, and elemental composition. The adverse effects of different concentrations of grinding dust (50, 150, 300, 450, and 600 μg ml-l) on RAW264.7 macrophages were evaluated, including changes in cell morphology and the production of lactate dehydrogenase (LDH) and reactive oxygen species (ROS). The dust particles released by grinding dental prosthesis made of these materials had different morphologies, particle sizes, and elemental compositions. They also induced varying degrees of cytotoxicity in RAW264.7 macrophages. A possible cytotoxicity mechanism is the induction of lipid peroxidation and plasma membrane damage as the dust particles penetrate cells. Therefore, clinicians who regularly work with these materials should wear the appropriate personal protection equipment to minimize exposure and reduce the health risks caused by these particulates.


3D Printing and Solvent Dissolution Recycling of Polylactide-Lunar Regolith Composites by Material Extrusion Approach.

  • Han Li‎ et al.
  • Polymers‎
  • 2020‎

The in situ resource utilization of lunar regolith is of great significance for the development of planetary materials science and space manufacturing. The material extrusion deposition approach provides an advanced method for fabricating polylactide/lunar regolith simulant (PLA/CLRS-1) components. This work aims to fabricate 3D printed PLA-lunar regolith simulant (5 and 10 wt.%) components using the material extrusion 3D printing approach, and realize their solvent dissolution recycling process. The influence of the lunar regolith simulant on the mechanical and thermal properties of the 3D printed PLA/CLRS-1 composites is systematically studied. The microstructure of 3D printed PLA/CLRS-1 parts was investigated by scanning electron microscopy (SEM) and X-ray computed tomography (XCT) analysis. The results showed that the lunar regolith simulant can be fabricated and combined with a PLA matrix utilizing a 3D printing process, only slightly influencing the mechanical performance of printed specimens. Moreover, the crystallization process of PLA is obviously accelerated by the addition of CLRS-1 because of heterogeneous nucleation. Additionally, by using gel permeation chromatography (GPC) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) characterization, it is found that the 3D printing and recycling processes have a negligible influence on the chemical structure and molecular weight of the PLA/CLRS-1 composites. As a breakthrough, we successfully utilize the lunar regolith simulant to print components with satisfactory mechanical properties and confirm the feasibility of recycling and reusing 3D printed PLA/CLRS-1 components via the solvent dissolution recycling approach.


Intestinal alkaline phosphatase improves intestinal permeability and alleviates multiple organ dysfunction caused by heatstroke.

  • Zhen Luo‎ et al.
  • Heliyon‎
  • 2023‎

Heatstroke (HS) is a severe acute disease related to gastrointestinal barrier dysfunction, systemic inflammation and multiple organ injury. Many of the functions of Intestinal alkaline phosphatase (IAP) have been linked to gut homeostasis, gut barrier function and inflammation. However, the protective effect of IAP on heatstroke is not fully elucidated. This study aims to explore the protective effect of IAP on heatstroke by maintaining intestinal barrier and improving permeability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: