Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 99 papers

microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition.

  • Aditya Parikh‎ et al.
  • Nature communications‎
  • 2014‎

Ovarian cancer is a leading cause of cancer deaths among women. Effective targets to treat advanced epithelial ovarian cancer (EOC) and biomarkers to predict treatment response are still lacking because of the complexity of pathways involved in ovarian cancer progression. Here we show that miR-181a promotes TGF-β-mediated epithelial-to-mesenchymal transition via repression of its functional target, Smad7. miR-181a and phosphorylated Smad2 are enriched in recurrent compared with matched-primary ovarian tumours and their expression is associated with shorter time to recurrence and poor outcome in patients with EOC. Furthermore, ectopic expression of miR-181a results in increased cellular survival, migration, invasion, drug resistance and in vivo tumour burden and dissemination. In contrast, miR-181a inhibition via decoy vector suppression and Smad7 re-expression results in significant reversion of these phenotypes. Combined, our findings highlight an unappreciated role for miR-181a, Smad7, and the TGF-β signalling pathway in high-grade serous ovarian cancer.


mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: a functional approach to unravel host-parasite interaction.

  • Ricardo B Leite‎ et al.
  • BMC genomics‎
  • 2013‎

The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis.


High IGFBP2 expression correlates with tumor severity in pediatric rhabdomyosarcoma.

  • Lucia Tombolan‎ et al.
  • The American journal of pathology‎
  • 2011‎

Rhabdomyosarcoma (RMS) is the most common childhood sarcoma and is identified as either the embryonal or alveolar (ARMS) subtype. In approximately 75% of cases, ARMSs are characterized by specific chromosomal translocations that involve PAX and FKHR genes. ARMS gene expression signatures vary, depending on the presence or absence of the translocations. Insulin-like growth factor-binding protein 2 (IGFBP2) is strongly overexpressed in translocation-negative RMS. Because IGFBP2 is associated with tumorigenesis, we investigated its functional role in RMS. An analysis of IGFBP2 distribution in RMS cell lines revealed a strong accumulation in the Golgi complex, in which morphological characteristics appeared peculiarly modified. After silencing IGFBP2 expression, our microarray analysis revealed mostly cell cycle and actin cytoskeleton gene modulations. In parallel, IGFBP2-silenced cells showed reduced cell cycle and rates of invasion and decreased seeding in the lungs after tail vein injections in immunodeficient mice. An analysis of IGFBP2 mRNA and protein localization in human tumors showed abnormal protein accumulation in the Golgi complex, mostly in PAX/FKHR-negative RMS. Moreover, an analysis of patients with RMS revealed the presence of conspicuous circulating levels of IGFBP2 proteins in children with highly aggressive RMS tumors. Taken together, our data provide evidence that IGFBP2 contributes to tumor progression and that it could be used as a marker to better classify clinical and biological risks in RMS.


Small RNAs in Circulating Exosomes of Cancer Patients: A Minireview.

  • Stefania Bortoluzzi‎ et al.
  • High-throughput‎
  • 2017‎

Extracellular vesicles (EVs) secreted from many cell types play important roles in intercellular communication, both as paracrine and endocrine factors, as they can circulate in biological fluids, including plasma. Amid EVs, exosomes are actively secreted vesicles that contain proteins, lipids, soluble factors, and nucleic acids, including microRNAs (miRNAs) and other classes of small RNAs (sRNA). miRNAs are prominent post-transcriptional regulators of gene expression and epigenetic silencers of transcription. We concisely review the roles of miRNAs in cell-fate determination and development and their regulatory activity on almost all the processes and pathways controlling tumor formation and progression. Next, we consider the evidence linking exosomes to tumor progression, particularly to the setting-up of permissive pre-metastatic niches. The study of exosomes in patients with different survival and therapy response can inform on the possible correlations between exosomal cargo and disease features. Moreover, the exploration of circulating exosomes as possible sources of non-invasive biomarkers could give new implements for anti-cancer therapy and metastasis prevention. Since the characterization of sRNAs in exosomes of cancer patients sparks opportunities to better understand their roles in cancer, we briefly present current experimental and computational protocols for sRNAs analysis in circulating exosomes by RNA-seq.


Detection of chromosomal regions showing differential gene expression in human skeletal muscle and in alveolar rhabdomyosarcoma.

  • Andrea Bisognin‎ et al.
  • BMC bioinformatics‎
  • 2004‎

Rhabdomyosarcoma is a relatively common tumour of the soft tissue, probably due to regulatory disruption of growth and differentiation of skeletal muscle stem cells. Identification of genes differentially expressed in normal skeletal muscle and in rhabdomyosarcoma may help in understanding mechanisms of tumour development, in discovering diagnostic and prognostic markers and in identifying novel targets for drug therapy.


A comparison on effects of normalisations in the detection of differentially expressed genes.

  • Monica Chiogna‎ et al.
  • BMC bioinformatics‎
  • 2009‎

Various normalisation techniques have been developed in the context of microarray analysis to try to correct expression measurements for experimental bias and random fluctuations. Major techniques include: total intensity normalisation; intensity dependent normalisation; and variance stabilising normalisation. The aim of this paper is to discuss the impact of normalisation techniques for two-channel array technology on the process of identification of differentially expressed genes.


Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.

  • Alessandro Coppe‎ et al.
  • Nucleic acids research‎
  • 2009‎

Genes co-expressed may be under similar promoter-based and/or position-based regulation. Although data on expression, position and function of human genes are available, their true integration still represents a challenge for computational biology, hampering the identification of regulatory mechanisms. We carried out an integrative analysis of genomic position, functional annotation and promoters of genes expressed in myeloid cells. Promoter analysis was conducted by a novel multi-step method for discovering putative regulatory elements, i.e. over-represented motifs, in a selected set of promoters, as compared with a background model. The combination of transcriptional, structural and functional data allowed the identification of sets of promoters pertaining to groups of genes co-expressed and co-localized in regions of the human genome. The application of motif discovery to 26 groups of genes co-expressed in myeloid cells differentiation and co-localized in the genome showed that there are more over-represented motifs in promoters of co-expressed and co-localized genes than in promoters of simply co-expressed genes (CEG). Motifs, which are similar to the binding sequences of known transcription factors, non-uniformly distributed along promoter sequences and/or occurring in highly co-expressed subset of genes were identified. Co-expressed and co-localized gene sets were grouped in two co-expressed genomic meta-regions, putatively representing functional domains of a high-level expression regulation.


Impact of probe annotation on the integration of miRNA-mRNA expression profiles for miRNA target detection.

  • Gabriele Sales‎ et al.
  • Nucleic acids research‎
  • 2010‎

MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional and translational levels by an imperfect binding to target mRNA 3'UTR regions. While the ab-initio computational prediction of miRNA-mRNA interactions still poses significant challenges, it is possible to overcome some of its limitations by carefully integrating into the analysis the paired expression profiles of miRNAs and mRNAs. In this work, we show how the choice of a proper probe annotation for microarray platforms is an essential requirement to achieve good sensitivity in the identification of miRNA-mRNA interactions. We compare the results obtained from the analysis of the same expression profiles using both gene and transcript based custom CDFs that we have developed for a number of different annotations (ENSEMBL, RefSeq, AceView). In all cases, transcript-based annotations clearly improve the effectiveness of data integration and thus provide a more reliable confirmation of computationally predicted miRNA-mRNA interactions.


Expression profiling characterization of laminin alpha-2 positive MDC.

  • Caterina Millino‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

In the Caucasian population, patients affected by the most frequent forms of congenital muscular dystrophies (MDC) are commonly divided into two groups. The first is characterized by mutations of the gene for the laminin alpha-2 (LAMA2). The second is positive for this protein, highly heterogeneous, and has no specific genetic defect associated yet. We studied the skeletal muscle transcriptome of four LAMA2 deficient and six LAMA2 positive MDC patients by cDNA microarrays. The expression profiling defined two patients groups: one mild and one severe phenotype. This result was in agreement with histopathological features but only partially with the clinical classification. The mild phenotype is characterized by a delayed maturation from slow to fast muscle fibers. Other muscle transcripts, such as telethonin, myosin light-chains 3 and 1V, are underexpressed in this group. We suggest that expression profiling will provide important information to improve our understanding of the molecular basis of laminin alpha-2 positive MDC.


Smokers and passive smokers gene expression profiles: correlation with the DNA oxidation damage.

  • Maura Lodovici‎ et al.
  • Free radical biology & medicine‎
  • 2007‎

Healthy volunteers (n=50) were enrolled for studying the variation of gene expression induced by smoking in peripheral lymphocytes. RNAs from smokers (>3 cigarettes/day, n=20) and passive smokers (exposed to tobacco smoke >3 h/day, n=10) were hybridized versus a reference pool obtained by mixing equal amounts of RNA from 20 nonsmokers, and gene expression was analyzed using DNA microarrays containing 13,971 oligos. Principal component analysis showed that 99.7% of gene expression variability was related to plasma cotinine, age, and DNA oxidation damage. SAM and GenMAPP/MAPPFinder analyses showed that smokers, compared to nonsmokers, had 129 down-regulated and 87 up-regulated genes, whereas passive smokers, compared to nonsmokers, had 44 down-regulated and 159 up-regulated genes, mainly involved in pathways associated with the activation of defensive responses. Hierarchical cluster analysis identified two distinct clusters of smokers, characterized by different oxidative DNA damage: smokers with high DNA oxidation damage, compared to smokers with low DNA oxidation damage, had a large number (150) of down-regulated genes, mainly associated with xenobiotic metabolism, DNA damage and repair, inflammatory responses, lymphocyte activation, and cytokine activity, suggesting a reduced cellular response to toxic agents in this subset of smokers that could lead to an increased DNA oxidation damage.


MOSClip: multi-omic and survival pathway analysis for the identification of survival associated gene and modules.

  • Paolo Martini‎ et al.
  • Nucleic acids research‎
  • 2019‎

Survival analyses of gene expression data has been a useful and widely used approach in clinical applications. But, in complex diseases, such as cancer, the identification of survival-associated cell processes - rather than single genes - provides more informative results because the efficacy of survival prediction increases when multiple prognostic features are combined to enlarge the possibility of having druggable targets. Moreover, genome-wide screening in molecular medicine has rapidly grown, providing not only gene expression but also multi-omic measurements such as DNA mutations, methylation, expression, and copy number data. In cancer, virtually all these aberrations can contribute in synergy to pathological processes, and their measurements can improve a patient's outcome and help in diagnosis and treatment decisions. Here, we present MOSClip, an R package implementing a new topological pathway analysis tool able to integrate multi-omic data and look for survival-associated gene modules. MOSClip tests the survival association of dimensionality-reduced multi-omic data using multivariate models, providing graphical devices for management, browsing and interpretation of results. Using simulated data we evaluated MOSClip performance in terms of false positives and false negatives in different settings, while the TCGA ovarian cancer dataset is used as a case study to highlight MOSClip's potential.


Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease.

  • Sonia Facchin‎ et al.
  • Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society‎
  • 2020‎

Butyrate has shown anti-inflammatory and regenerative properties, providing symptomatic relief when orally supplemented in patients suffering from various colonic diseases. We investigated the effect of a colonic-delivery formulation of butyrate on the fecal microbiota of patients with inflammatory bowel diseases (IBDs).


Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data.

  • Matteo Calgaro‎ et al.
  • Genome biology‎
  • 2020‎

The correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.


CircRNAs Dysregulated in Juvenile Myelomonocytic Leukemia: CircMCTP1 Stands Out.

  • Anna Dal Molin‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Juvenile myelomonocytic leukemia (JMML), a rare myelodysplastic/myeloproliferative neoplasm of early childhood, is characterized by clonal growth of RAS signaling addicted stem cells. JMML subtypes are defined by specific RAS pathway mutations and display distinct gene, microRNA (miRNA) and long non-coding RNA expression profiles. Here we zoom in on circular RNAs (circRNAs), molecules that, when abnormally expressed, may participate in malignant deviation of cellular processes. CirComPara software was used to annotate and quantify circRNAs in RNA-seq data of a "discovery cohort" comprising 19 JMML patients and 3 healthy donors (HD). In an independent set of 12 JMML patients and 6 HD, expression of 27 circRNAs was analyzed by qRT-PCR. CircRNA-miRNA-gene networks were reconstructed using circRNA function prediction and gene expression data. We identified 119 circRNAs dysregulated in JMML and 59 genes showing an imbalance of the circular and linear products. Our data indicated also circRNA expression differences among molecular subgroups of JMML. Validation of a set of deregulated circRNAs in an independent cohort of JMML patients confirmed the down-regulation of circOXNAD1 and circATM, and a marked up-regulation of circLYN, circAFF2, and circMCTP1. A new finding in JMML links up-regulated circMCTP1 with known tumor suppressor miRNAs. This and other predicted interactions with miRNAs connect dysregulated circRNAs to regulatory networks. In conclusion, this study provides insight into the circRNAome of JMML and paves the path to elucidate new molecular disease mechanisms putting forward circMCTP1 up-regulation as a robust example.


Hydrogen peroxide induced by nerve injury promotes axon regeneration via connective tissue growth factor.

  • Samuele Negro‎ et al.
  • Acta neuropathologica communications‎
  • 2022‎

Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.


Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species.

  • Barbara Gris‎ et al.
  • Microorganisms‎
  • 2020‎

The Euganean Thermal District has been known since Roman times for the therapeutic properties of peloids, obtained from natural clays that have undergone a traditional maturation process. This leads to the growth of a green microbial biofilm with Cyanobacteria and the target species Phormidium sp. ETS-05 as fundamental components for their ability to synthetize anti-inflammatory molecules. Currently, in-depth studies on the microbiota colonizing Euganean peloids, as in general on peloids utilized worldwide, are missing. This is the first characterization of the microbial community of Euganean thermal muds, also investigating the effects of environmental factors on its composition. We analysed 53 muds from 29 sites (Spas) using a polyphasic approach, finding a stable microbiota peculiar to the area. Differences among mud samples mainly depended on two parameters: water temperature and shading of mud maturation plants. In the range 37-47 °C and in the case of irradiance attenuation due to the presence of protective roofs, a statistically significant higher mud Chl a content was detected. Moreover, in these conditions, a characteristic microbial and Cyanobacteria population composition dominated by Phormidium sp. ETS-05 was observed. We also obtained the complete genome sequence of this target species using a mixed sequencing approach based on Illumina and Nanopore sequencing.


Circulating miR-185-5p as a Potential Biomarker for Arrhythmogenic Right Ventricular Cardiomyopathy.

  • Claudia Sacchetto‎ et al.
  • Cells‎
  • 2021‎

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease characterized by progressive myocardial fibro-fatty replacement, arrhythmias and risk of sudden death. Its diagnosis is challenging and often it is achieved after disease onset or postmortem. In this study, we sought to identify circulating microRNAs (miRNAs) differentially expressed in ARVC patients compared to healthy controls. In the pilot study, we screened the expression of 754 miRNAs from 21 ARVC patients and 20 healthy controls. After filtering the miRNAs considering a log fold-change cut-off of ±1, p-value < 0.05, we selected five candidate miRNAs for a subsequent validation study in which we used TaqMan-based real-time PCR to analyse samples from 37 ARVC patients and 30 healthy controls. We found miR-185-5p significantly upregulated in ARVC patients. Receiver operating characteristic analysis indicated an area under the curve of 0.854, corroborating the link of this miRNA and ARVC pathophysiology.


CircIMPACT: An R Package to Explore Circular RNA Impact on Gene Expression and Pathways.

  • Alessia Buratin‎ et al.
  • Genes‎
  • 2021‎

Circular RNAs (circRNAs) are transcripts generated by back-splicing. CircRNAs might regulate cellular processes by different mechanisms, including interaction with miRNAs and RNA-binding proteins. CircRNAs are pleiotropic molecules whose dysregulation has been linked to human diseases and can drive cancer by impacting gene expression and signaling pathways. The detection of circRNAs aberrantly expressed in disease conditions calls for the investigation of their functions. Here, we propose CircIMPACT, a bioinformatics tool for the integrative analysis of circRNA and gene expression data to facilitate the identification and visualization of the genes whose expression varies according to circRNA expression changes. This tool can highlight regulatory axes potentially governed by circRNAs, which can be prioritized for further experimental study. The usefulness of CircIMPACT is exemplified by a case study analysis of bladder cancer RNA-seq data. The link between circHIPK3 and heparanase (HPSE) expression, due to the circHIPK3-miR558-HPSE regulatory axis previously determined by experimental studies on cell lines, was successfully detected. CircIMPACT is freely available at GitHub.


Increased Tenascin C, Osteopontin and HSP90 Levels in Plasmatic Small Extracellular Vesicles of Pediatric ALK-Positive Anaplastic Large Cell Lymphoma: New Prognostic Biomarkers?

  • Federica Lovisa‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2021‎

Over the past 15 years, several biological and pathological characteristics proved their significance in pediatric anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALCL) prognostic stratification. However, the identification of new non-invasive disease biomarkers, relying on the most important disease mechanisms, is still necessary. In recent years, plasmatic circulating small extracellular vesicles (S-EVs) gathered great importance both as stable biomarker carriers and active players in tumorigenesis. In the present work, we performed a comprehensive study on the proteomic composition of plasmatic S-EVs of pediatric ALCL patients compared to healthy donors (HDs). By using a mass spectrometry-based proteomics approach, we identified 50 proteins significantly overrepresented in S-EVs of ALCL patients. Gene Ontology enrichment analysis disclosed cellular components and molecular functions connected with S-EV origin and vesicular trafficking, whereas cell adhesion, glycosaminoglycan metabolic process, extracellular matrix organization, collagen fibril organization and acute phase response were the most enriched biological processes. Of importance, consistently with the presence of nucleophosmin (NPM)-ALK fusion protein in ALCL cells, a topological enrichment analysis based on Reactome- and Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived networks highlighted a dramatic increase in proteins of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in ALCL S-EVs, which included heat shock protein 90-kDa isoform alpha 1 (HSP90AA1), osteopontin (SPP1/OPN) and tenascin C (TNC). These results were validated by Western blotting analysis on a panel of ALCL and HD cases. Further research is warranted to better define the role of these S-EV proteins as diagnostic and, possibly, prognostic parameters at diagnosis and for ALCL disease monitoring.


Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer.

  • Paola Todeschini‎ et al.
  • Cancers‎
  • 2021‎

The onset of chemo-resistant recurrence represents the principal cause of high-grade serous ovarian carcinoma (HGSOC) death. HGSOC masses are characterized by a hypoxic microenvironment, which contributes to the development of this chemo-resistant phenotype. Hypoxia regulated-miRNAs (HRMs) represent a molecular response of cancer cells to hypoxia and are involved in tumor progression. We investigated the expression of HRMs using miRNA expression data from a total of 273 advanced-stage HGSOC samples. The miRNAs associated with chemoresistance and survival were validated by RT-qPCR and target prediction, and comparative pathway analysis was conducted for target gene identification. Analysis of miRNA expression profiles indicated miR-23a-3p and miR-181c-5p over-expression as associated with chemoresistance and poor PFS. RT-qPCR data confirmed upregulation of miR-23a-3p in tumors from chemoresistant HGSOC patients and its significant association with shorter PFS. In silico miR-23a-3p target prediction and comparative pathway analysis identified platinum drug resistance as the pathway with the highest number of miR-23a-3p target genes. Among them, APAF-1 emerged as the most promising, being downregulated in platinum-resistant patients and in HGSOC chemo-resistant cells. These results highlight miR-23a-3p as a potential biomarker for HGSOC platinum response and prognosis and the miR23a-3p/APAF1 axis as a possible target to overcome platinum-resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: