Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 703 papers

Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria.

  • Young Sun Kang‎ et al.
  • Kidney international‎
  • 2010‎

Proteinuria is a primary clinical symptom of a large number of glomerular diseases that progress to end-stage renal failure. Podocyte dysfunctions play a fundamental role in defective glomerular filtration in many common forms of proteinuric kidney disorders. Since binding of these cells to the basement membrane is mediated by integrins, we determined the role of integrin-linked kinase (ILK) in podocyte dysfunction and proteinuria. ILK expression was induced in mouse podocytes by various injurious stimuli known to cause proteinuria including TGF-beta1, adriamycin, puromycin, and high ambient glucose. Podocyte ILK was also found to be upregulated in human proteinuric glomerular diseases. Ectopic expression of ILK in podocytes decreased levels of the epithelial markers nephrin and ZO-1, induced mesenchymal markers such as desmin, fibronectin, matrix metalloproteinase-9 (MMP-9), and alpha-smooth muscle actin (alpha-SMA), promoted cell migration, and increased the paracellular albumin flux across podocyte monolayers. ILK also induced Snail, a key transcription factor mediating epithelial-mesenchymal transition (EMT). Blockade of ILK activity with a highly selective small molecule inhibitor reduced Snail induction and preserved podocyte phenotypes following TGF-beta1 or adriamycin stimulation. In vivo, this ILK inhibitor ameliorated albuminuria, repressed glomerular induction of MMP-9 and alpha-SMA, and preserved nephrin expression in murine adriamycin nephropathy. Our results show that upregulation of ILK is a convergent pathway leading to podocyte EMT, migration, and dysfunction. ILK may be an attractive target for therapeutic intervention of proteinuric kidney diseases.


Requirement of TORC1 for late-phase long-term potentiation in the hippocampus.

  • Yang Zhou‎ et al.
  • PloS one‎
  • 2006‎

Late-phase long-term potentiation (L-LTP) and long-term memory depend on the transcription of mRNA of CRE-driven genes and synthesis of proteins. However, how synaptic signals propagate to the nucleus is unclear. Here we report that the CREB coactivator TORC1 (transducer of regulated CREB activity 1) undergoes neuronal activity-induced translocation from the cytoplasm to the nucleus, a process required for CRE-dependent gene expression and L-LTP. Overexpressing a dominant-negative form of TORC1 or down-regulating TORC1 expression prevented activity-dependent transcription of CREB target genes in cultured hippocampal neurons, while overexpressing a wild-type form of TORC1 facilitated basal and activity-induced transcription of CREB target genes. Furthermore, overexpressing the dominant-negative form of TORC1 suppressed the maintenance of L-LTP without affecting early-phase LTP, while overexpressing the wild-type form of TORC1 facilitated the induction of L-LTP in hippocampal slices. Our results indicate that TORC1 is essential for CRE-driven gene expression and maintenance of long-term synaptic potentiation.


Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains.

  • Laurence Rohmer‎ et al.
  • Genome biology‎
  • 2007‎

Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.


Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain.

  • Biao Ma‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.


A novel PAX7 10-bp indel variant modulates promoter activity, gene expression and contributes to different phenotypes of Chinese cattle.

  • Yao Xu‎ et al.
  • Scientific reports‎
  • 2018‎

Paired box 7 (PAX7) gene regulates the conversion of muscle satellite cells into myogenic cells and participates in multi-step processes in myogenesis. Expression levels of PAX7 are decisive for its regulatory function. Previous reports revealed that PAX7 were responsible for the developmental traits of muscle. The relationship of the PAX7 promoter variants and livestock phenotypic traits has not been fully elucidated. We detected a novel 10-bp insertion/deletion (indel) polymorphism in the bovine PAX7 promoter and revealed that the indel altered the binding of the transcriptional factor ZNF219. Luciferase reporter assay showed that deletion-deletion (Del-Del) genotype of the PAX7 gene showed 2.79-fold higher promoter activity than the insertion-insertion (Ins-Ins) genotype (P < 0.05), and ZNF219 overexpression significantly diminished the luciferase activity in Ins-Ins groups. Moreover, the expression of PAX7 and its down-stream genes were detected in fetal skeletal muscle of cattle with different PAX7 genotypes, where the Del-Del genotype also displayed high expression levels. Statistical association analysis demonstrated that this indel had significant effects on early growth traits in cattle. These findings provide a complete overview of the function of the PAX7 10-bp variant, which may have potential as a genetic marker for marker-assisted selection in improving economically significant traits of cattle.


FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating β-catenin signalling.

  • Ting Cai‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

β-Catenin signalling plays an important role in regulating tubular epithelial-to-mesenchymal transition (EMT), an indispensable programme for driving renal fibrosis. As an adapter protein, four and a half LIM domain protein 2 (FHL2) acts as a coregulator of β-catenin in several other cell types. To determine whether FHL2 affects β-catenin signalling and thus is involved in tubular EMT, we examined its expression and function in the process of TGF-β1-induced EMT. FHL2 mRNA and protein were induced by TGF-β1 in rat tubular epithelial cells (NRK-52E), an effect that intracellular Smad signalling was required. Ectopic expression of FHL2 inhibited E-cadherin and enhanced α-smooth muscle actin (α-SMA) and fibronectin expression, whereas knockdown of FHL2 partially restored E-cadherin and reduced α-SMA and fibronectin induction stimulated by TGF-β1. Overexpression of FHL2 increased β-catenin dephosphorylation (Ser37/Thr41), nuclear translocation and β-catenin-mediated transcription and up-regulated expression of β-catenin target, EMT-related genes, such as Snail, Twist, vimentin, plasminogen activator inhibitor-1 and matrix metalloproteinase-7. Conversely, knockdown of FHL2 increased β-catenin phosphorylation (Ser33/37/Thr41), decreased its nuclear translocation and inhibited β-catenin-mediated transcription and target genes expression. TGF-β1 induced a FHL2/β-catenin interaction in NRK-52E cells, especially in the nuclei. In a mouse model of obstructive nephropathy, FHL2 mRNA and protein were induced in a time-dependent fashion, and the extent and pattern of renal β-catenin activation were positively correlated with FHL2 induction. Collectively, this study suggests that FHL2, via modulating β-catenin signalling, may implicate in regulation of TGF-β1-mediated tubular EMT and could be a potential therapeutic target for fibrotic kidney disease.


Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis.

  • Min Jin‎ et al.
  • BMC plant biology‎
  • 2017‎

Flavonoids constitute a diverse class of secondary metabolites which exhibit potent bioactivities for human health and have been indicated to play an important role in plant development and defense. However, accumulation and variation of flavonoid content in diverse maize lines and the genes responsible for their biosynthesis in this important crop remain largely unknown. In this study, we combine genetic mapping, metabolite profiling and gene regulatory network analysis to further enhance understanding of the maize flavonoid pathway.


Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host.

  • Peng Zhou‎ et al.
  • Microorganisms‎
  • 2020‎

Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine.


A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions.

  • Qiong Rong‎ et al.
  • Cell proliferation‎
  • 2020‎

Mesenchymal stem cells (MSCs) based therapy for bone regeneration has been regarded as a promising method in the clinic. However, hBMSCs with invasive harvesting process and undesirable proliferation rate hinder the extensive usage. HUCMSCs of easier access and excellent performances provide an alternative for the fabrication of tissue-engineered bone construct. Evidence suggested the osteogenesis ability of hUCMSCs was weaker than that of hBMSCs. To address this issue, a co-culture strategy of osteogenically and angiogenically induced hUCMSCs has been proposed since thorough vascularization facilitates the blood-borne nutrition and oxygen to transport in the scaffold, synergistically expediting the process of ossification.


Serological and molecular epidemiology of Japanese Encephalitis in Zhejiang, China, 2015-2018.

  • Xuan Deng‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Shifts have occurred in the epidemiological characteristics of Japanese encephalitis (JE), extending from the molecular level to the population level. The aim of this study was to investigate the seroprevalence of JE neutralizing antibodies in healthy populations from different age groups in Zhejiang Province, and to conduct mosquito monitoring to evaluate the infection rate of Japanese encephalitis virus (JEV) among vectors, as well as the molecular characteristics of the E gene of isolated JEV strains.


Superb microvascular imaging for detecting neovascularization of carotid plaque compared with contrast-enhanced ultrasound: A protocol for systematic review and meta analysis.

  • Yang Zhou‎ et al.
  • Medicine‎
  • 2020‎

Superb microvascular imaging (SMI) is a novel Doppler technique that depicts low velocity blood flow without the use of a contrast agent. Studies suggested that SMI may or may not detect neovascularization of carotid plaque with accuracy comparable to contrast-enhanced ultrasound. To gain clarity, a meta-analysis to systematically review and synthesize relevant data on the SMI for the detection of intraplaque neovascularization was undertaken.


The Antibiofilm Activity and Mechanism of Nanosilver- and Nanozinc-Incorporated Mesoporous Calcium-Silicate Nanoparticles.

  • Diya Leng‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Mesoporous calcium-silicate nanoparticles (MCSNs) have good prospects in the medical field due to their great physicochemical characteristics, antibacterial activity and drug delivery capacity. This study was to analyze the antibiofilm activity and mechanisms of silver (Ag) and zinc (Zn) incorporated MCSNs (Ag/Zn-MCSNs) with different percentages of Ag and Zn.


Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns.

  • Yang Zhou‎ et al.
  • BMC biology‎
  • 2020‎

Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date.


Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses.

  • Jun-Ting Cheng‎ et al.
  • Virology journal‎
  • 2020‎

Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported.


Commensal Microbes Affect Host Humoral Immunity to Bordetella pertussis Infection.

  • Youyi Zhang‎ et al.
  • Infection and immunity‎
  • 2019‎

As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.


Metagenomic next-generation sequencing diagnosis of peripheral pulmonary infectious lesions through virtual navigation, radial EBUS, ultrathin bronchoscopy, and ROSE.

  • Nana Liu‎ et al.
  • The Journal of international medical research‎
  • 2019‎

To evaluate the efficacy of combined rapid on-site evaluation of cytology (ROSE), ultrathin bronchoscopy, virtual bronchoscopic navigation, radial endobronchial ultrasound (EBUS), and metagenomic next-generation sequencing (mNGS) for diagnosis of peripheral pulmonary infectious lesions.


Hepatic Proteomic Changes and Sirt1/AMPK Signaling Activation by Oxymatrine Treatment in Rats With Non-alcoholic Steatosis.

  • Hong Xu‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Currently, active ingredients of herbal extracts that can suppress lipid accumulation in the liver have been considered a potential treatment option for non-alcoholic fatty liver disease.


Fuzheng Huayu Capsule Attenuates Hepatic Fibrosis by Inhibiting Activation of Hepatic Stellate Cells.

  • Mei Wu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

To investigate the mechanisms of Fuzheng Huayu (FZHY) Capsule in the treatment of hepatitis B (HBV)- associated fibrosis, HBV patients were divided into two groups, 50 cases were in the nucleotide analogues (NAs) group, while additional 50 cases were in the NAs + FZHY group.


Effect of Dielectric Barrier Discharge (DBD) Treatment on the Dielectric Properties of Poly(vinylidene fluoride)(PVDF)-Based Copolymer.

  • Jie Liu‎ et al.
  • Polymers‎
  • 2020‎

Understanding the mechanism of dielectric breakdown is important for improving the breakdown field of a polymer. In this work, dielectric barrier discharge (DBD) treatment was applied to one surface of P(VDF-CTFE) (vinylidene fluoride-chlorotrifluoroethylene) film, and the dielectric properties of the film were studied. When the treated surface was connected to the high potential side of the power source for the breakdown test, the breakdown field of the treated film was significantly reduced compared to that of the pristine film. Based on the characterization results for the surface chemistry and morphology, it was proposed that the phenomenon was caused by the combined effects of hole injection from the metal electrode and the damage of polymer chains near the surface of the polymer film after the DBD treatment process.


Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease.

  • Tong-Yao Hou‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: