Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain.

Proceedings of the National Academy of Sciences of the United States of America | 2018

The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.

Pubmed ID: 29463697 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Rice Genome Annotation (tool)

RRID:SCR_006663

Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes

View all literature mentions

InterPro (tool)

RRID:SCR_006695

Service providing functional analysis of proteins by classifying them into families and predicting domains and important sites. They combine protein signatures from a number of member databases into a single searchable resource, capitalizing on their individual strengths to produce a powerful integrated database and diagnostic tool. This integrated database of predictive protein signatures is used for the classification and automatic annotation of proteins and genomes. InterPro classifies sequences at superfamily, family and subfamily levels, predicting the occurrence of functional domains, repeats and important sites. InterPro adds in-depth annotation, including GO terms, to the protein signatures. You can access the data programmatically, via Web Services. The member databases use a number of approaches: # ProDom: provider of sequence-clusters built from UniProtKB using PSI-BLAST. # PROSITE patterns: provider of simple regular expressions. # PROSITE and HAMAP profiles: provide sequence matrices. # PRINTS provider of fingerprints, which are groups of aligned, un-weighted Position Specific Sequence Matrices (PSSMs). # PANTHER, PIRSF, Pfam, SMART, TIGRFAMs, Gene3D and SUPERFAMILY: are providers of hidden Markov models (HMMs). Your contributions are welcome. You are encouraged to use the ''''Add your annotation'''' button on InterPro entry pages to suggest updated or improved annotation for individual InterPro entries.

View all literature mentions