Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 71 papers

Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells.

  • David L Schonberg‎ et al.
  • Cancer cell‎
  • 2015‎

Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable dependence.


Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells.

  • Monica E Burgett‎ et al.
  • Oncotarget‎
  • 2016‎

The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting.


Differential connexin function enhances self-renewal in glioblastoma.

  • Masahiro Hitomi‎ et al.
  • Cell reports‎
  • 2015‎

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Cx26 drives self-renewal in triple-negative breast cancer via interaction with NANOG and focal adhesion kinase.

  • Praveena S Thiagarajan‎ et al.
  • Nature communications‎
  • 2018‎

Tumors adapt their phenotypes during growth and in response to therapies through dynamic changes in cellular processes. Connexin proteins enable such dynamic changes during development, and their dysregulation leads to disease states. The gap junction communication channels formed by connexins have been reported to exhibit tumor-suppressive functions, including in triple-negative breast cancer (TNBC). However, we find that connexin 26 (Cx26) is elevated in self-renewing cancer stem cells (CSCs) and is necessary and sufficient for their maintenance. Cx26 promotes CSC self-renewal by forming a signaling complex with the pluripotency transcription factor NANOG and focal adhesion kinase (FAK), resulting in NANOG stabilization and FAK activation. This FAK/NANOG-containing complex is not formed in mammary epithelial or luminal breast cancer cells. These findings challenge the paradigm that connexins are tumor suppressors in TNBC and reveal a unique function for Cx26 in regulating the core self-renewal signaling that controls CSC maintenance.


Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2.

  • Christine E Eyler‎ et al.
  • Cell‎
  • 2011‎

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value.

  • Ann Mari Rosager‎ et al.
  • PloS one‎
  • 2017‎

Astrocytic brain tumors are the most frequent primary brain tumors. Treatment with radio- and chemotherapy has increased survival making prognostic biomarkers increasingly important. The aim of the present study was to investigate the expression and prognostic value of transferrin receptor-1 (TfR1) as well as ferritin heavy (FTH) and light (FTL) chain in astrocytic brain tumors. A cohort of 111 astrocytic brain tumors (grade II-IV) was stained immunohistochemically with antibodies against TfR1, FTH, and FTL and scored semi-quantitatively. Double-immunofluorescence stainings were established to determine the phenotype of cells expressing these markers. We found that TfR1, FTH, and FTL were expressed by tumor cells in all grades. TfR1 increased with grade (p<0.001), but was not associated with prognosis in the individual grades. FTH and FTL were expressed by tumor cells and cells with microglial/macrophage morphology. Neither FTH nor FTL increased with malignancy grade, but low FTH expression by both tumor cells (p = 0.03) and microglia/macrophages (p = 0.01) correlated with shorter survival in patients anaplastic astrocytoma. FTL-positive microglia/macrophages were frequent in glioblastomas, and high FTL levels correlated with shorter survival in the whole cohort (p = 0.01) and in patients with anaplastic astrocytoma (p = 0.02). Double-immunofluorescence showed that TfR1, FTH, and FTL were co-expressed to a limited extent with the stem cell-related marker CD133. FTH and FTL were also co-expressed by IBA-1-positive microglia/macrophages. In conclusion, TfR1 was highly expressed in glioblastomas and associated with shorter survival in the whole cohort, but not in the individual malignancy grades. Low levels of FTH-positive tumor cells and microglia/macrophages were associated with poor survival in anaplastic astrocytomas, while high amounts of FTL-positive microglia/macrophages had a negative prognostic value. The results suggest that regulation of the iron metabolism in astrocytic brain tumors is complex involving both autocrine and paracrine signaling.


CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors.

  • Caner Saygin‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Effective targeting of cancer stem cells (CSCs) requires neutralization of self-renewal and chemoresistance, but these phenotypes are often regulated by distinct molecular mechanisms. Here we report the ability to target both of these phenotypes via CD55, an intrinsic cell surface complement inhibitor, which was identified in a comparative analysis between CSCs and non-CSCs in endometrioid cancer models. In this context, CD55 functions in a complement-independent manner and required lipid raft localization for CSC maintenance and cisplatin resistance. CD55 regulated self-renewal and core pluripotency genes via ROR2/JNK signaling and in parallel cisplatin resistance via lymphocyte-specific protein tyrosine kinase (LCK) signaling, which induced DNA repair genes. Targeting LCK signaling via saracatinib, an inhibitor currently undergoing clinical evaluation, sensitized chemoresistant cells to cisplatin. Collectively, our findings identify CD55 as a unique signaling node that drives self-renewal and therapeutic resistance through a bifurcating signaling axis and provides an opportunity to target both signaling pathways in endometrioid tumors.


Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma.

  • Kiran K Velpula‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.


A Targeted Multi-omic Analysis Approach Measures Protein Expression and Low-Abundance Transcripts on the Single-Cell Level.

  • Florian Mair‎ et al.
  • Cell reports‎
  • 2020‎

High-throughput single-cell RNA sequencing (scRNA-seq) has become a frequently used tool to assess immune cell heterogeneity. Recently, the combined measurement of RNA and protein expression was developed, commonly known as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq). Acquisition of protein expression data along with transcriptome data resolves some of the limitations inherent to only assessing transcripts but also nearly doubles the sequencing read depth required per single cell. Furthermore, there is still a paucity of analysis tools to visualize combined transcript-protein datasets. Here, we describe a targeted transcriptomics approach that combines an analysis of over 400 genes with simultaneous measurement of over 40 proteins on 2 × 104 cells in a single experiment. This targeted approach requires only about one-tenth of the read depth compared to a whole-transcriptome approach while retaining high sensitivity for low abundance transcripts. To analyze these multi-omic datasets, we adapted one-dimensional soli expression by nonlinear stochastic embedding (One-SENSE) for intuitive visualization of protein-transcript relationships on a single-cell level.


SATB2 drives glioblastoma growth by recruiting CBP to promote FOXM1 expression in glioma stem cells.

  • Weiwei Tao‎ et al.
  • EMBO molecular medicine‎
  • 2020‎

Nuclear matrix-associated proteins (NMPs) play critical roles in regulating chromatin organization and gene transcription by binding to the matrix attachment regions (MARs) of DNA. However, the functional significance of NMPs in glioblastoma (GBM) progression remains unclear. Here, we show that the Special AT-rich Binding Protein-2 (SATB2), one of crucial NMPs, recruits histone acetyltransferase CBP to promote the FOXM1-mediated cell proliferation and tumor growth of GBM. SATB2 is preferentially expressed by glioma stem cells (GSCs) in GBM. Disrupting SATB2 markedly inhibited GSC proliferation and GBM malignant growth by down-regulating expression of key genes involved in cell proliferation program. SATB2 activates FOXM1 expression to promote GSC proliferation through binding to the MAR sequence of FOXM1 gene locus and recruiting CBP to the MAR. Importantly, pharmacological inhibition of SATB2/CBP transcriptional activity by the CBP inhibitor C646 suppressed GSC proliferation in vitro and GBM growth in vivo. Our study uncovers a crucial role of the SATB2/CBP-mediated transcriptional regulation in GBM growth, indicating that targeting SATB2/CBP may effectively improve GBM treatment.


Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells.

  • Masahiro Hitomi‎ et al.
  • JCI insight‎
  • 2021‎

Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.


Transferred mitochondria accumulate reactive oxygen species, promoting proliferation.

  • Chelsea U Kidwell‎ et al.
  • eLife‎
  • 2023‎

Recent studies reveal that lateral mitochondrial transfer, the movement of mitochondria from one cell to another, can affect cellular and tissue homeostasis. Most of what we know about mitochondrial transfer stems from bulk cell studies and have led to the paradigm that functional transferred mitochondria restore bioenergetics and revitalize cellular functions to recipient cells with damaged or non-functional mitochondrial networks. However, we show that mitochondrial transfer also occurs between cells with functioning endogenous mitochondrial networks, but the mechanisms underlying how transferred mitochondria can promote such sustained behavioral reprogramming remain unclear. We report that unexpectedly, transferred macrophage mitochondria are dysfunctional and accumulate reactive oxygen species in recipient cancer cells. We further discovered that reactive oxygen species accumulation activates ERK signaling, promoting cancer cell proliferation. Pro-tumorigenic macrophages exhibit fragmented mitochondrial networks, leading to higher rates of mitochondrial transfer to cancer cells. Finally, we observe that macrophage mitochondrial transfer promotes tumor cell proliferation in vivo. Collectively these results indicate that transferred macrophage mitochondria activate downstream signaling pathways in a ROS-dependent manner in cancer cells, and provide a model of how sustained behavioral reprogramming can be mediated by a relatively small amount of transferred mitochondria in vitro and in vivo.


Spatial immunosampling of MRI-defined glioblastoma regions reveals immunologic fingerprint of non-contrast enhancing, infiltrative tumor margins.

  • Matthew M Grabowski‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Glioblastoma (GBM) treatment includes maximal safe resection of the core and MRI contrast-enhancing (CE) tumor. Complete resection of the infiltrative non-contrast-enhancing (NCE) tumor rim is rarely achieved. We established a safe, semi-automated workflow for spatially-registered sampling of MRI-defined GBM regions in 19 patients with downstream analysis and biobanking, enabling studies of NCE, wherefrom recurrence/progression typically occurs. Immunophenotyping revealed underrepresentation of myeloid cell subsets and CD8+ T cells in the NCE. While NCE T cells phenotypically and functionally resembled those in matching CE tumor, subsets of activated (CD69 hi ) effector memory CD8+ T cells were overrepresented. Contrarily, CD25 hi Tregs and other subsets were underrepresented. Overall, our study demonstrated that MRI-guided, spatially-registered, intraoperative immunosampling is feasible as part of routine GBM surgery. Further elucidation of the shared and spatially distinct microenvironmental biology of GBM will enable development of therapeutic approaches targeting the NCE infiltrative tumor to decrease GBM recurrence.


The MIF promoter SNP rs755622 is associated with immune activation in glioblastoma.

  • Tyler J Alban‎ et al.
  • JCI insight‎
  • 2023‎

Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistance and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and, ultimately, the treatment response. However, little is known about how germline mutations affect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in the promoter of the cytokine macrophage migration inhibitory factor (MIF) is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may affect the immune microenvironment and further reveal a link between lactotransferrin and immune activation.


Sex-Biased T-cell Exhaustion Drives Differential Immune Responses in Glioblastoma.

  • Juyeun Lee‎ et al.
  • Cancer discovery‎
  • 2023‎

Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunologic sex differences are not fully understood. Here, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in the tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD-1 treatment. Moreover, increased T-cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by the X chromosome inactivation escape gene Kdm6a. These findings demonstrate that sex-biased predetermined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response.


High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues.

  • Charles H Camp‎ et al.
  • Nature photonics‎
  • 2014‎

An imaging platform based on broadband coherent anti-Stokes Raman scattering (BCARS) has been developed which provides an advantageous combination of speed, sensitivity and spectral breadth. The system utilizes a configuration of laser sources that probes the entire biologically-relevant Raman window (500 cm-1 to 3500 cm-1) with high resolution (< 10 cm-1). It strongly and efficiently stimulates Raman transitions within the typically weak "fingerprint" region using intrapulse 3-colour excitation, and utilizes the nonresonant background (NRB) to heterodyne amplify weak Raman signals. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumours and the surrounding healthy brain matter.


Cadherin-11 regulates motility in normal cortical neural precursors and glioblastoma.

  • Jessica D Schulte‎ et al.
  • PloS one‎
  • 2013‎

Metastasizing tumor cells undergo a transformation that resembles a process in normal development when non-migratory epithelial cells modulate the expression of cytoskeletal and adhesion proteins to promote cell motility. Here we find a mesenchymal cadherin, Cadherin-11 (CDH11), is increased in cells exiting the ventricular zone (VZ) neuroepithelium during normal cerebral cortical development. When overexpressed in cortical progenitors in vivo, CDH11 causes premature exit from the neuroepithelium and increased cell migration. CDH11 expression is elevated in human brain tumors, correlating with higher tumor grade and decreased patient survival. In glioblastoma, CDH11-expressing tumor cells can be found localized near tumor vasculature. Endothelial cells stimulate TGFβ signaling and CDH11 expression in glioblastoma cells. TGFβ promotes glioblastoma cell motility, and knockdown of CDH11 expression in primary human glioblastoma cells inhibits TGFβ-stimulated migration. Together, these findings show that Cadherin-11 can promote cell migration in neural precursors and glioblastoma cells and suggest that endothelial cells increase tumor aggressiveness by co-opting mechanisms that regulate normal neural development.


beta1 integrin maintains integrity of the embryonic neocortical stem cell niche.

  • Karine Loulier‎ et al.
  • PLoS biology‎
  • 2009‎

During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin alpha2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.


c-Myc is required for maintenance of glioma cancer stem cells.

  • Jialiang Wang‎ et al.
  • PloS one‎
  • 2008‎

Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells.


The Translocator Protein (TSPO) Genetic Polymorphism A147T Is Associated with Worse Survival in Male Glioblastoma Patients.

  • Katie M Troike‎ et al.
  • Cancers‎
  • 2021‎

Glioblastoma (GBM) is the most common primary brain tumor in adults, with few available therapies and a five-year survival rate of 7.2%. Hence, strategies for improving GBM prognosis are urgently needed. The translocator protein 18kDa (TSPO) plays crucial roles in essential mitochondria-based physiological processes and is a validated biomarker of neuroinflammation, which is implicated in GBM progression. The TSPO gene has a germline single nucleotide polymorphism, rs6971, which is the most common SNP in the Caucasian population. High TSPO gene expression is associated with reduced survival in GBM patients; however, the relation between the most frequent TSPO genetic variant and GBM pathogenesis is not known. The present study retrospectively analyzed the correlation of the TSPO polymorphic variant rs6971 with overall and progression-free survival in GBM patients using three independent cohorts. TSPO rs6971 polymorphism was significantly associated with shorter overall survival and progression-free survival in male GBM patients but not in females in one large cohort of 441 patients. We observed similar trends in two other independent cohorts. These observations suggest that the TSPO rs6971 polymorphism could be a significant predictor of poor prognosis in GBM, with a potential for use as a prognosis biomarker in GBM patients. These results reveal for the first time a biological sex-specific relation between rs6971 TSPO polymorphism and GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: