Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 286 papers

Quantitative Analysis of Taste Bud Cell Numbers in the Circumvallate and Foliate Taste Buds of Mice.

  • Takahiro Ogata‎ et al.
  • Chemical senses‎
  • 2020‎

A mouse single taste bud contains 10-100 taste bud cells (TBCs) in which the elongated TBCs are classified into 3 cell types (types I-III) equipped with different taste receptors. Accordingly, differences in the cell numbers and ratios of respective cell types per taste bud may affect taste-nerve responsiveness. Here, we examined the numbers of each immunoreactive cell for the type II (sweet, bitter, or umami receptor cells) and type III (sour and/or salt receptor cells) markers per taste bud in the circumvallate and foliate papillae and compared these numerical features of TBCs per taste bud to those in fungiform papilla and soft palate, which we previously reported. In circumvallate and foliate taste buds, the numbers of TBCs and immunoreactive cells per taste bud increased as a linear function of the maximal cross-sectional taste bud area. Type II cells made up approximately 25% of TBCs irrespective of the regions from which the TBCs arose. In contrast, type III cells in circumvallate and foliate taste buds made up approximately 11% of TBCs, which represented almost 2 times higher than what was observed in the fungiform and soft palate taste buds. The densities (number of immunoreactive cells per taste bud divided by the maximal cross-sectional area of the taste bud) of types II and III cells per taste bud are significantly higher in the circumvallate papillae than in the other regions. The effects of these region-dependent differences on the taste response of the taste bud are discussed.


Type II/III cell composition and NCAM expression in taste buds.

  • Eriko Koyanagi-Matsumura‎ et al.
  • Cell and tissue research‎
  • 2021‎

Taste buds are localized in fungiform (FF), foliate (FL), and circumvallate (CV) papillae on the tongue, and taste buds also occur on the soft palate (SP). Mature elongate cells within taste buds are constantly renewed from stem cells and classified into three cell types, Types I, II, and III. These cell types are generally assumed to reside in respective taste buds in a particular ratio corresponding to taste regions. A variety of cell-type markers were used to analyze taste bud cells. NCAM is the first established marker for Type III cells and is still often used. However, NCAM was examined mainly in the CV, but not sufficiently in other regions. Furthermore, our previous data suggested that NCAM may be transiently expressed in the immature stage of Type II cells. To precisely assess NCAM expression as a Type III cell marker, we first examined Type II and III cell-type markers, IP3R3 and CA4, respectively, and then compared NCAM with them using whole-mount immunohistochemistry. IP3R3 and CA4 were segregated from each other, supporting the reliability of these markers. The ratio between Type II and III cells varied widely among taste buds in the respective regions (Pearson's r = 0.442 [CV], 0.279 [SP], and - 0.011 [FF]), indicating that Type II and III cells are contained rather independently in respective taste buds. NCAM immunohistochemistry showed that a subset of taste bud cells were NCAM(+)CA4(-). While NCAM(+)CA4(-) cells were IP3R3(-) in the CV, the majority of them were IP3R3(+) in the SP and FF.


A physiologic role for serotonergic transmission in adult rat taste buds.

  • Luc Jaber‎ et al.
  • PloS one‎
  • 2014‎

Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.


Immunocytochemical survey of putative neurotransmitters in taste buds from Necturus maculosus.

  • J Welton‎ et al.
  • The Journal of comparative neurology‎
  • 1992‎

To investigate synaptic mechanisms in taste buds and collect information about synaptic transmission in these sensory organs, we have examined taste buds of the mudpuppy, Necturus maculosus for the presence of neurotransmitters and neuromodulators. Immunocytochemical staining at the light microscopic level revealed the presence of serotonin-like and cholecystokinin-like (CCK) immunoreactivity in basal cells in the taste bud. Nerve fibers innervating taste buds were immunoreactive for vasoactive intestinal peptide-like (VIP), substance P-like, and calcitonin gene-related peptide-like (CGRP) or compounds closely related to these substances. Immunoreactivity for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) in the taste cells and nerve fibers was absent. These data suggest that serotonin, CCK, VIP, substance P, and CGRP are involved in synaptic transmission or neuromodulation in the peripheral organs of taste. No evidence was found for cholinergic or adrenergic mechanisms on the basis of the absence of immunocytochemical staining for key enzymes involved in these two transmitter systems.


Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

  • Bradley T Biggs‎ et al.
  • PloS one‎
  • 2016‎

Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.


Qualitative and quantitative differences between taste buds of the rat and mouse.

  • Huazhi Ma‎ et al.
  • BMC neuroscience‎
  • 2007‎

Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCbeta2, alpha-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume.


Localization of serotonin in taste buds: a comparative study in four vertebrates.

  • D J Kim‎ et al.
  • The Journal of comparative neurology‎
  • 1995‎

To investigate monoaminergic synaptic mechanisms in taste buds, we examined taste buds of mice, rats, rabbits, and mudpuppies for the presence of the neurotransmitter candidate, serotonin. Immunocytochemistry revealed serotonin-like immunostaining in cells in mammalian taste buds and Merkel-like basal cells in taste buds of mudpuppies. In untreated mudpuppies and in mammals injected with the precursor to serotonin, L-tryptophan, certain taste cells showed serotonin-like immunoreactivity, although in mammalian taste buds the immunostaining was relatively weak. After pretreating mammals with 5-hydroxytryptophan (5-HTP), the intermediate precursor between L-tryptophan and serotonin, several taste cells showed strong immunoreactivity for serotonin. These findings indicate that mammalian taste cells normally contain serotonin and that taste cells can take up 5-HTP and convert it to serotonin. Immunocytochemistry on wholemount preparations demonstrated that serotonergic cells of mudpuppies (i.e., Merkel-like basal cells) were disposed in a ring at the periphery of taste buds. Similarly, serotonergic cells in mammalian taste buds tended to be located at the periphery of taste buds. Based on the position of serotonergic cells in the taste bud and on recent physiological studies on the actions of serotonin in taste buds, we postulate that serotonin functions as a neuromodulator or neurotransmitter in vertebrate taste buds.


Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

  • E Viña‎ et al.
  • Neuroscience letters‎
  • 2013‎

In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated.


Membrane properties of two types of basal cells in Necturus taste buds.

  • R J Delay‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1994‎

Necturus taste buds contain two types of basal cells: presumptive stem cells and Merkel-like basal cells. Both types of basal cells are small round cells located at the base of the taste bud, indistinguishable from each other with light microscopy. However, with electron microscopy, autoradiography, or immunocytochemistry, these two types of basal cells can be easily distinguished. We isolated basal cells from taste buds, characterized their voltage-dependent currents using gigaseal whole-cell recordings, and processed the cells for electron microscopy or immunocytochemistry. We were able to distinguish two cell types electrophysiologically and to correlate cell type with membrane properties. Isolated Merkel-like basal cells had several voltage-activated currents: transient, TTX-sensitive, inward Na+ current; sustained, saturating outward K+ current; and slowly inactivating inward Ca2+ current. These currents are similar to those observed in taste receptor cells. In contrast, presumptive stem cells from Necturus taste buds only had outward K+ currents.


Characterization of the expression pattern of adrenergic receptors in rat taste buds.

  • Y Zhang‎ et al.
  • Neuroscience‎
  • 2010‎

Taste buds signal the presence of chemical stimuli in the oral cavity to the central nervous system using both early transduction mechanisms, which allow single cells to be depolarized via receptor-mediated signaling pathways, and late transduction mechanisms, which involve extensive cell-to-cell communication among the cells in the bud. The latter mechanisms, which involve a large number of neurotransmitters and neuropeptides, are less well understood. Among neurotransmitters, multiple lines of evidence suggest that norepinephrine plays a yet unknown role in the taste bud. This study investigated the expression pattern of adrenergic receptors in the rat posterior taste bud. Expression of alpha1A, alpha1B, alpha1D, alpha2A, alpha2B, alpha2C, beta1, and the beta2 adrenoceptor subtypes was observed in taste buds using RT-PCR and immunocytochemical techniques. Taste buds also expressed the biosynthetic enzyme for norepinephrine, dopamine beta-hydroxylase (DbetaH), as well as the norepinephrine transporter. Further, expression of the epinephrine synthetic enzyme, phenylethanolamine N-methyltransferase (PNMT), was observed suggesting a possible role for this transmitter in the bud. Phenotyping adrenoceptor expression patterns with double labeling experiments to gustducin, synaptosomal-associated protein 25 (SNAP-25), and neural cell adhesion molecule (NCAM) suggests they are prominently expressed in subsets of cells known to express taste receptor molecules but segregated from cells known to have synapses with the afferent nerve fiber. Alpha and beta adrenoceptors co-express with one another in unique patterns as observed with immunocytochemistry and single cell reverse transcription polymerase chain reaction (RT-PCR). These data suggest that single cells express multiple adrenergic receptors and that adrenergic signaling may be particularly important in bitter, sweet, and umami taste qualities. In summary, adrenergic signaling in the taste bud occurs through complex pathways that include presynaptic and postsynaptic receptors and likely play modulatory roles in processing of gustatory information similar to other peripheral sensory systems such as the retina, cochlea, and olfactory bulb.


The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

  • Eric D Larson‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.


Whole-Mount Staining, Visualization, and Analysis of Fungiform, Circumvallate, and Palate Taste Buds.

  • Lisa C Ohman‎ et al.
  • Journal of visualized experiments : JoVE‎
  • 2021‎

Taste buds are collections of taste-transducing cells specialized to detect subsets of chemical stimuli in the oral cavity. These transducing cells communicate with nerve fibers that carry this information to the brain. Because taste-transducing cells continuously die and are replaced throughout adulthood, the taste-bud environment is both complex and dynamic, requiring detailed analyses of its cell types, their locations, and any physical relationships between them. Detailed analyses have been limited by tongue-tissue heterogeneity and density that have significantly reduced antibody permeability. These obstacles require sectioning protocols that result in splitting taste buds across sections so that measurements are only approximated, and cell relationships are lost. To overcome these challenges, the methods described herein involve collecting, imaging, and analyzing whole taste buds and individual terminal arbors from three taste regions: fungiform papillae, circumvallate papillae, and the palate. Collecting whole taste buds reduces bias and technical variability and can be used to report absolute numbers for features including taste-bud volume, total taste-bud innervation, transducing-cell counts, and the morphology of individual terminal arbors. To demonstrate the advantages of this method, this paper provides comparisons of taste bud and innervation volumes between fungiform and circumvallate taste buds using a general taste-bud marker and a label for all taste fibers. A workflow for the use of sparse-cell genetic labeling of taste neurons (with labeled subsets of taste-transducing cells) is also provided. This workflow analyzes the structures of individual taste-nerve arbors, cell type numbers, and the physical relationships between cells using image analysis software. Together, these workflows provide a novel approach for tissue preparation and analysis of both whole taste buds and the complete morphology of their innervating arbors.


Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

  • Azusa Kurokawa‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction.


Evidence for a role of glutamate as an efferent transmitter in taste buds.

  • Aurelie Vandenbeuch‎ et al.
  • BMC neuroscience‎
  • 2010‎

Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds.


Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

  • Yijen A Huang‎ et al.
  • PloS one‎
  • 2012‎

Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.


Taste buds are not derived from neural crest in mouse, chicken, and zebrafish.

  • Wenxin Yu‎ et al.
  • Developmental biology‎
  • 2021‎

Our lineage tracing studies using multiple Cre mouse lines showed a concurrent labeling of abundant taste bud cells and the underlying connective tissue with a neural crest (NC) origin, warranting a further examination on the issue of whether there is an NC derivation of taste bud cells. In this study, we mapped NC cell lineages in three different models, Sox10-iCreERT2/tdT mouse, GFP+ neural fold transplantation to GFP- chickens, and Sox10-Cre/GFP-RFP zebrafish model. We found that in mice, Sox10-iCreERT2 specifically labels NC cell lineages with a single dose of tamoxifen at E7.5 and that the labeled cells were widely distributed in the connective tissue of the tongue. No labeled cells were found in taste buds or the surrounding epithelium in the postnatal mice. In the GFP+/GFP- chicken chimera model, GFP+ cells migrated extensively to the cranial region of chicken embryos ipsilateral to the surgery side but were absent in taste buds in the base of oral cavity and palate. In zebrafish, Sox10-Cre/GFP-RFP faithfully labeled known NC-derived tissues but did not label taste buds in lower jaw or the barbel. Our data, together with previous findings in axolotl, indicate that taste buds are not derived from NC cells in rodents, birds, amphibians or teleost fish.


SARS-CoV-2 recombinant spike protein induces cell apoptosis in rat taste buds.

  • Toru Yamamoto‎ et al.
  • Journal of dental sciences‎
  • 2023‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause loss or alteration of taste and smell as early symptoms or sequelae, but the detailed mechanism behind this phenomenon remains unclear. Here, we investigated whether the SARS-CoV-2 spike protein induces taste cell apoptosis and expression of the apoptosis-related cytokine TNF-α in male Sprague-Dawley rats. Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-fluorescein nick end labeling (TUNEL) assay results revealed a significantly higher apoptosis index for taste cells in the SARS-CoV-2 group than for those in the control group. An immunohistochemistry analysis indicated significantly more TNF-α-positive cells in the SARS-CoV-2 group compared with the control group. These data suggest that the SARS-CoV-2 spike protein promotes taste cell apoptosis and the release of apoptosis-related cytokine TNF-α, implicating its contribution to the taste malfunction caused by coronavirus disease 2019 (COVID-19).


Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

  • Prasangi Rajapaksha‎ et al.
  • Scientific reports‎
  • 2016‎

In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.


Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

  • Nandakumar Venkatesan‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue.


Vimentin Localization in the Zebrafish Oral Cavity: A Potential Role in Taste Buds Regeneration.

  • Marialuisa Aragona‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: