Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 417 papers

The z-spectrum from human blood at 7T.

  • Simon M Shah‎ et al.
  • NeuroImage‎
  • 2018‎

Chemical Exchange Saturation Transfer (CEST) has been used to assess healthy and pathological tissue in both animals and humans. However, the CEST signal from blood has not been fully assessed. This paper presents the CEST and nuclear Overhauser enhancement (NOE) signals detected in human blood measured via z-spectrum analysis. We assessed the effects of blood oxygenation levels, haematocrit, cell structure and pH upon the z-spectrum in ex vivo human blood for different saturation powers at 7T. The data were analysed using Lorentzian difference (LD) model fitting and AREX (to compensate for changes in T1), which have been successfully used to study CEST effects in vivo. Full Bloch-McConnell fitting was also performed to provide an initial estimate of exchange rates and transverse relaxation rates of the various pools. CEST and NOE signals were observed at 3.5 ppm, -1.7 ppm and -3.5 ppm and were found to originate primarily from the red blood cells (RBCs), although the amide proton transfer (APT) CEST effect, and NOEs showed no dependence upon oxygenation levels. Upon lysing, the APT and NOE signals fell significantly. Different pH levels in blood resulted in changes in both the APT and NOE (at -3.5 ppm), which suggests that this NOE signal is in part an exchange relayed process. These results will be important for assessing in vivo z-spectra.


Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.

  • Maarten Mennes‎ et al.
  • NeuroImage‎
  • 2010‎

The resting brain exhibits coherent patterns of spontaneous low-frequency BOLD fluctuations. These so-called resting-state functional connectivity (RSFC) networks are posited to reflect intrinsic representations of functional systems commonly implicated in cognitive function. Yet, the direct relationship between RSFC and the BOLD response induced by task performance remains unclear. Here we examine the relationship between a region's pattern of RSFC across participants and that same region's level of BOLD activation during an Eriksen Flanker task. To achieve this goal we employed a voxel-matched regression method, which assessed whether the magnitude of task-induced activity at each brain voxel could be predicted by measures of RSFC strength for the same voxel, across 26 healthy adults. We examined relationships between task-induced activation and RSFC strength for six different seed regions [Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673-9678.], as well as the "default mode" and "task-positive" resting-state networks in their entirety. Our results indicate that, for a number of brain regions, inter-individual differences in task-induced BOLD activity were predicted by one of two resting-state properties: (1) the region's positive connectivity strength with the task-positive network, or (2) its negative connectivity with the default mode network. Strikingly, most of the regions exhibiting a significant relationship between their RSFC properties and task-induced BOLD activity were located in transition zones between the default mode and task-positive networks. These results suggest that a common mechanism governs many brain regions' neural activity during rest and its neural activity during task performance.


Extracting information from functional connectivity maps via function-on-scalar regression.

  • Philip T Reiss‎ et al.
  • NeuroImage‎
  • 2011‎

Functional connectivity of an individual human brain is often studied by acquiring a resting state functional magnetic resonance imaging scan, and mapping the correlation of each voxel's BOLD time series with that of a seed region. As large collections of such maps become available, including multisite data sets, there is an increasing need for ways to distill the information in these maps in a readily visualized form. Here we propose a two-step analytic strategy. First, we construct connectivity-distance profiles, which summarize the connectivity of each voxel in the brain as a function of distance from the seed, a functional relationship that has attracted much recent interest. Next, these profile functions are regressed on predictors of interest, whether categorical (e.g., acquisition site or diagnostic group) or continuous (e.g., age). This procedure can provide insight into the roles of multiple sources of variation, and detect large-scale patterns not easily available from conventional analyses. We illustrate the proposed methods with a resting state data set pooled across four imaging sites.


Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI.

  • R Matthew Hutchison‎ et al.
  • NeuroImage‎
  • 2015‎

Based on its diverse and wide-spread patterns of connectivity, primate posteromedial cortex (PMC) is well positioned to support roles in several aspects of sensory-, cognitive- and motor-related processing. Previous work in both humans and non-human primates (NHPs) using resting-state functional MRI (rs-fMRI) suggests that a subregion of PMC, the medial parieto-occipital cortex (mPOC), by virtue of its intrinsic functional connectivity (FC) with visual cortex, may only play a role in higher-order visual processing. Recent neuroanatomical tracer studies in NHPs, however, demonstrate that mPOC also has prominent cortico-cortical connections with several frontoparietal structures involved in movement planning and control, a finding consistent with increasing observations of reach- and grasp-related activity in the mPOC of both NHPs and humans. To reconcile these observations, here we used rs-fMRI data collected from both awake humans and anesthetized macaque monkeys to more closely examine and compare parcellations of mPOC across species and explore the FC patterns associated with these subdivisions. Seed-based and voxel-wise hierarchical cluster analyses revealed four broad spatially separated functional boundaries that correspond with graded differences in whole-brain FC patterns in each species. The patterns of FC observed are consistent with mPOC forming a critical hub of networks involved in action planning and control, spatial navigation, and working memory. In addition, our comparison between species indicates that while there are several similarities, there may be some species-specific differences in functional neural organization. These findings and the associated theoretical implications are discussed.


Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence.

  • Thomas Prasloski‎ et al.
  • NeuroImage‎
  • 2012‎

Myelin water imaging, a magnetic resonance imaging technique capable of resolving the fraction of water molecules which are located between the layers of myelin, is a valuable tool for investigating both normal and pathological brain structure in vivo. There is a strong need for pulse sequences which improve the quality and applicability of myelin water imaging in a clinical setting. In this study, we validated the use of a fast multi echo T(2) relaxation sequence for myelin water imaging. Using a multiple combined gradient and spin echo (GRASE) technique, we attain whole cerebrum myelin water images in under 15 minutes. Region of interest analysis indicates that this fast GRASE imaging sequence produces results which are in good agreement with pure spin echo measurements (R(2)=0.95, p<0.0001). This drastic improvement in speed and brain coverage compared to current spin echo standards will allow increased inclusion of myelin water imaging in neurological research protocols and opens up the possibility of applications in a clinical setting.


White matter integrity in right hemisphere predicts pitch-related grammar learning.

  • Psyche Loui‎ et al.
  • NeuroImage‎
  • 2011‎

White matter plays an important role in various domains of cognitive function. While disruptions in white matter are known to affect many domains of behavior and cognition, the ability to acquire grammatical regularities has been mostly linked to the left hemisphere, perhaps due to its dependence on linguistic stimuli. The role of white matter in the right hemisphere in grammar acquisition is yet unknown. Here we show for the first time that in the domain of pitch, intact white matter connectivity in right-hemisphere analogs of language areas is important for grammar learning. A pitch-based artificial grammar learning task was conducted on subjects who also underwent diffusion tensor imaging. Probabilistic tractography using seed regions of interest in the right inferior frontal gyrus and right middle temporal gyrus showed positive correlations between tract volume and learning performance. Furthermore, significant correlations were observed between learning performance and FA in white matter underlying the supramarginal gyrus, corresponding to the right temporal-parietal junction of the arcuate fasciculus. The control task of recognition did not correlate with tract volume or FA, and control tracts in the left hemisphere did not correlate with behavioral performance. Results show that the right ventral arcuate fasciculus is important in pitch-based artificial grammar learning, and that brain structures subserving learning may be tied to the hemisphere that processes the stimulus more generally.


76-space analysis of grey matter diffusivity: methods and applications.

  • Tianming Liu‎ et al.
  • NeuroImage‎
  • 2006‎

Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) allow in vivo investigation of molecular motion of tissue water at a microscopic level in cerebral gray matter (GM) and white matter (WM). DWI/DTI measure of water diffusion has been proven to be invaluable for the study of many neurodegenerative diseases (e.g., Alzheimer's disease and Creutzfeldt-Jakob disease) that predominantly involve GM. Thus, quantitative analysis of GM diffusivity is of scientific interest and is promised to have a clinical impact on the investigation of normal brain aging and neuropathology. In this paper, we propose an automated framework for analysis of GM diffusivity in 76 standard anatomic subdivisions of gray matter to facilitate studies of neurodegenerative and other gray matter neurological diseases. The computational framework includes three enabling technologies: (1) automatic parcellation of structural MRI GM into 76 precisely defined neuroanatomic subregions ("76-space"), (2) automated segmentation of GM, WM and CSF based on DTI data, and (3) automatic measurement of the average apparent diffusion coefficient (ADC) in each segmented GM subregion. We evaluate and validate this computational framework for 76-space GM diffusivity analysis using data from normal volunteers and from patients with Creutzfeldt-Jakob disease.


Somatosensory cortical plasticity in carpal tunnel syndrome--a cross-sectional fMRI evaluation.

  • Vitaly Napadow‎ et al.
  • NeuroImage‎
  • 2006‎

Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first, second, and third digits. We hypothesize that aberrant afferent input in CTS will lead to cortical plasticity. Functional MRI (fMRI) and neurophysiological testing were performed on CTS patients and healthy adults. Median nerve innervated digit 2 (D2), and digit 3 (D3) and ulnar nerve innervated digit 5 (D5) were stimulated during fMRI. Surface-based and ROI-based analyses consistently demonstrated more extensive and stronger contralateral sensorimotor cortical representations of D2 and D3 for CTS patients as compared to healthy adults (P < 0.05). Differences were less profound for D5. Moreover, D3 fMRI activation in both the contralateral SI and motor cortex correlated positively with the D3 sensory conduction latency. Analysis of somatotopy suggested that contralateral SI representations for D2 and D3 were less separated for CTS patients (3.8 +/- 1.0 mm) than for healthy adults (7.5 +/- 1.2 mm). Furthermore, the D3/D2 separation distance correlated negatively with D2 sensory conduction latency-the greater the latency, the closer the D2/D3 cortical representations (r = -0.79, P < 0.05). Coupled with a greater extent of SI representation for these CTS affected digits, the closer cortical representations can be interpreted as a blurred somatotopic arrangement for CTS affected digits. These findings provide further evidence that CTS is not manifest in the periphery alone. Our results are consistent with Hebbian plasticity mechanisms, as our cohort of CTS patients had predominant paresthesias, which produce more temporally coherent afferent signaling from affected digits.


Raloxifene exposure enhances brain activation during memory performance in healthy elderly males; its possible relevance to behavior.

  • R Goekoop‎ et al.
  • NeuroImage‎
  • 2005‎

Raloxifene is a selective estrogen receptor modulator (SERM) that is prescribed in females only, but its use in male subjects is increasingly considered. With a growing number of patients having potential benefit from raloxifene, the need for an assessment of its effects on brain function is growing. Effects of estrogens on brain function are very subtle and difficult to detect by neuropsychological assessment. Functional imaging techniques, however, have been relatively successful in detecting such changes. This study used functional magnetic resonance imaging (fMRI) to examine effects of raloxifene treatment on memory function. Healthy elderly males (n = 28; mean age 63.6 years, SD 2.4) were scanned during performance on a face encoding paradigm. Scans were made at baseline and after 3 months of treatment with either raloxifene (n = 14) or placebo (n = 14). Treatment effects were analyzed using mixed-effects statistical analysis (FSL). Activation during task performance involved bilateral parietal and prefrontal areas, anterior cingulate gyrus, and inferior prefrontal, occipital, and mediotemporal areas bilaterally. When compared to placebo, raloxifene treatment significantly enhanced activation in these structures (Z > 3.1), except for mediotemporal areas. Task performance accuracy diminished in the placebo group (P = 0.02), but remained constant in the raloxifene group (P = 0.60). In conclusion, raloxifene treatment enhanced brain activation in areas spanning a number of different cognitive domains, suggesting an effect on cortical arousal. Such effects may translate into small effects on behavior, including effects on attention and working memory performance, executive functions, verbal skills, and episodic memory. Further neuropsychological assessment is necessary to test the validity of these predictions.


MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field.

  • José P Marques‎ et al.
  • NeuroImage‎
  • 2010‎

The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.


Striatal activations signal prediction errors on confidence in the absence of external feedback.

  • Reka Daniel‎ et al.
  • NeuroImage‎
  • 2012‎

Research on the neural bases of learning has mainly focused on reinforcement learning where the central role of the dopaminergic system is well established. However, in everyday life many decisions are not followed by feedback, in which case humans have been shown to code the most probable outcome into memory. We used functional magnetic resonance imaging (fMRI) to examine the neural basis of internally generated signals on correctness and decision confidence in the complete absence of feedback in a categorization task. During test trials after observational training activation in dopaminergic target regions was modulated by the correctness of the answer similarly as during feedback-based training. Moreover, activation in the nucleus accumbens and putamen was correlated with the prediction error on confidence as estimated by a reinforcement learning model. In this model subjective confidence ratings acquired after each trial served as outcome measure. Activation in the striatum therefore follows a similar pattern in response to prediction errors on confidence as it does during reinforcement learning in response to reward prediction errors, but with respect to internally generated signals based on knowledge of the structure of the environment. Furthermore, ventral striatal activation decreased with stimulus novelty, which might support the allocation of attention to unfamiliar stimuli. These results provide a parsimonious account for the neural bases of learning, indicating overlapping neural substrates of reinforcement learning and learning when outcome information has to be internally constructed.


Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia.

  • V C Austin‎ et al.
  • NeuroImage‎
  • 2005‎

Functional magnetic resonance imaging (fMRI) in animal models provides a platform for more extensive investigation of drug effects and underlying physiological mechanisms than is possible in humans. However, it is usually necessary for the animal to be anesthetized. In this study, we have used a rat model of direct cortical stimulation to investigate the effects of anesthesia in rodent fMRI. Specifically, we have sought to answer two questions (i) what is the relationship between baseline neuronal activity and the BOLD response to stimulation under halothane anesthesia? And (ii) how does the BOLD response change after transferring from halothane to the commonly used anesthetic alpha-chloralose? In the first set of experiments, we found no significant differences in the amplitude of the BOLD response at the different halothane doses studied, despite electroencephalography (EEG) recordings indicating a dose-dependent reduction in baseline neuronal activity with increasing halothane levels. In the second set of experiments, a reduction in the spatial extent of the BOLD response was apparent immediately after transfer from halothane to alpha-chloralose anesthesia, although no change in the peak signal change was evident. However, several hours after transfer to alpha-chloralose, a significant increase in both the spatial extent and peak height of the BOLD response was observed, as well as an increased sensitivity to secondary cortical and subcortical activation. These findings suggest that, although alpha-chloralose anesthesia is associated with a greater BOLD response for a fixed stimulus relative to halothane, there is substantial variation in the extent and magnitude of the response over time that could introduce considerable variability in studies using this anesthetic.


Lateralization of ventral and dorsal auditory-language pathways in the human brain.

  • Geoffrey J M Parker‎ et al.
  • NeuroImage‎
  • 2005‎

Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal areas along the superior temporal gyrus while a separate 'dorsal' route connects these areas posteriorly via the inferior parietal lobe. We use diffusion MRI tractography, a noninvasive technique based on diffusion-weighted MRI, to investigate the possibility of a similar pattern of connectivity in the human brain for the first time. The dorsal pathway from Wernicke's area to Broca's area is shown to include the arcuate fasciculus and connectivity to Brodmann area 40, lateral superior temporal gyrus (LSTG), and lateral middle temporal gyrus. A ventral route between Wernicke's area and Broca's area is demonstrated that connects via the external capsule/uncinate fasciculus and the medial superior temporal gyrus. Ventral connections are also observed in the lateral superior and middle temporal gyri. The connections are stronger in the dominant hemisphere, in agreement with previous studies of functional lateralization of auditory-language processing.


Chronic nicotine exposure impairs uncertainty modulation on reinforcement learning in anterior cingulate cortex and serotonin system.

  • Zhengde Wei‎ et al.
  • NeuroImage‎
  • 2018‎

Deficits in the computational processes of reinforcement learning have been suggested to underlie addiction. Additionally, environmental uncertainty, which is encoded in the anterior cingulate cortex (ACC), modulates reward prediction errors (RPEs) during reinforcement learning and exacerbates addiction. The present study tested whether and how the ACC would have an essential role in drug addiction by failing to use uncertainty to modulate the RPEs during reinforcement learning. In Experiment I, we found that the ACC/medial prefrontal cortex (MPFC) did not modulate RPE learning according to uncertainty in smokers. The effect of uncertainty × RPE in the ACC/MPFC was correlated with the learning rate of RPEs and the duration of nicotine use. Experiment II demonstrated that serotonin, but not dopamine, receptor mRNA expression significantly decreased in the ACC of the nicotine exposed compared to the control rats. Furthermore, there was a positive correlation between learning rate and serotonin receptor mRNA expression in the ACC. Therefore, all present results suggest that impairments in uncertainty modulation in the ACC disrupt reinforcement learning processes in chronic nicotine users and contribute to maladaptive decision-making. These findings support interventions for pathological decision-making in drug addiction that strongly focus on the serotonin system in ACC.


Imaging human cortical responses to intraneural microstimulation using magnetoencephalography.

  • George C O'Neill‎ et al.
  • NeuroImage‎
  • 2019‎

The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents. We found that by assessing the modulation of the beta (13-30 Hz) rhythm during single-unit INMS, significant changes in oscillatory amplitude occur in the contralateral primary somatosensory cortex within and across a group of fast adapting type I mechanoreceptive afferents, which corresponded well to the induced response from matched vibrotactile stimulation. Combining the spatiotemporal specificity of MEG with the selective single-unit stimulation of INMS enables the interrogation of the central representations of different aspects of tactile afferent signalling within the human cortices. The fundamental finding that single-unit INMS ERD responses are robust and consistent with natural somatosensory stimuli will permit us to more dynamically probe the central nervous system responses in humans, to address questions about the processing of touch from the different classes of mechanoreceptive afferents and the effects of varying the stimulus frequency and patterning.


Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children.

  • Elena Boto‎ et al.
  • NeuroImage‎
  • 2022‎

Optically-pumped magnetometers (OPMs) are an established alternative to superconducting sensors for magnetoencephalography (MEG), offering significant advantages including flexibility to accommodate any head size, uniform coverage, free movement during scanning, better data quality and lower cost. However, OPM sensor technology remains under development; there is flexibility regarding OPM design and it is not yet clear which variant will prove most effective for MEG. Most OPM-MEG implementations have either used single-axis (equivalent to conventional MEG) or dual-axis magnetic field measurements. Here we demonstrate use of a triaxial OPM formulation, able to characterise the full 3D neuromagnetic field vector. We show that this novel sensor is able to characterise magnetic fields with high accuracy and sensitivity that matches conventional (dual-axis) OPMs. We show practicality via measurement of biomagnetic fields from both the heart and the brain. Using simulations, we demonstrate how triaxial measurement offers improved cortical coverage, especially in infants. Finally, we introduce a new 3D-printed child-friendly OPM-helmet and demonstrate feasibility of triaxial measurement in a five-year-old. In sum, the data presented demonstrate that triaxial OPMs offer a significant improvement over dual-axis variants and are likely to become the sensor of choice for future MEG systems, particularly for deployment in paediatric populations.


Feasibility of functional MRI at ultralow magnetic field via changes in cerebral blood volume.

  • Kai Buckenmaier‎ et al.
  • NeuroImage‎
  • 2019‎

We investigate the feasibility of performing functional MRI (fMRI) at ultralow field (ULF) with a Superconducting QUantum Interference Device (SQUID), as used for detecting magnetoencephalography (MEG) signals from the human head. While there is negligible magnetic susceptibility variation to produce blood oxygenation level-dependent (BOLD) contrast at ULF, changes in cerebral blood volume (CBV) may be a sensitive mechanism for fMRI given the five-fold spread in spin-lattice relaxation time (T1) values across the constituents of the human brain. We undertook simulations of functional signal strength for a simplified brain model involving activation of a primary cortical region in a manner consistent with a blocked task experiment. Our simulations involve measured values of T1 at ULF and experimental parameters for the performance of an upgraded ULFMRI scanner. Under ideal experimental conditions we predict a functional signal-to-noise ratio of between 3.1 and 7.1 for an imaging time of 30 min, or between 1.5 and 3.5 for a blocked task experiment lasting 7.5 min. Our simulations suggest it may be feasible to perform fMRI using a ULFMRI system designed to perform MRI and MEG in situ.


Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat.

  • Anna N Vongerichten‎ et al.
  • NeuroImage‎
  • 2016‎

Epilepsy affects approximately 50 million people worldwide, and 20-30% of these cases are refractory to antiepileptic drugs. Many patients with intractable epilepsy can benefit from surgical resection of the tissue generating the seizures; however, difficulty in precisely localising seizure foci has limited the number of patients undergoing surgery as well as potentially lowered its effectiveness. Here we demonstrate a novel imaging method for monitoring rapid changes in cerebral tissue impedance occurring during interictal and ictal activity, and show that it can reveal the propagation of pathological activity in the cortex. Cortical impedance was recorded simultaneously to ECoG using a 30-contact electrode mat placed on the exposed cortex of anaesthetised rats, in which interictal spikes (IISs) and seizures were induced by cortical injection of 4-aminopyridine (4-AP), picrotoxin or penicillin. We characterised the tissue impedance responses during IISs and seizures, and imaged these responses in the cortex using Electrical Impedance Tomography (EIT). We found a fast, transient drop in impedance occurring as early as 12ms prior to the IISs, followed by a steep rise in impedance within ~120ms of the IIS. EIT images of these impedance changes showed that they were co-localised and centred at a depth of 1mm in the cortex, and that they closely followed the activity propagation observed in the surface ECoG signals. The fast, pre-IIS impedance drop most likely reflects synchronised depolarisation in a localised network of neurons, and the post-IIS impedance increase reflects the subsequent shrinkage of extracellular space caused by the intense activity. EIT could also be used to picture a steady rise in tissue impedance during seizure activity, which has been previously described. Thus, our results demonstrate that EIT can detect and localise different physiological changes during interictal and ictal activity and, in conjunction with ECoG, may in future improve the localisation of seizure foci in the clinical setting.


Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy.

  • A Bainbridge‎ et al.
  • NeuroImage‎
  • 2014‎

Multimodal measurements combining broadband near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy ((31)P MRS) assessed associations between changes in the oxidation state of cerebral mitochondrial cytochrome-c-oxidase (Δ[oxCCO]) and (31)P metabolite peak-area ratios during and after transient cerebral hypoxia-ischemia (HI) in the newborn piglet.


Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods.

  • Stener Nerland‎ et al.
  • NeuroImage‎
  • 2021‎

The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: