Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 34,953 papers

CRYSTAL23: A Program for Computational Solid State Physics and Chemistry.

  • Alessandro Erba‎ et al.
  • Journal of chemical theory and computation‎
  • 2023‎

The Crystal program for quantum-mechanical simulations of materials has been bridging the realm of molecular quantum chemistry to the realm of solid state physics for many years, since its first public version released back in 1988. This peculiarity stems from the use of atom-centered basis functions within a linear combination of atomic orbitals (LCAO) approach and from the corresponding efficiency in the evaluation of the exact Fock exchange series. In particular, this has led to the implementation of a rich variety of hybrid density functional approximations since 1998. Nowadays, it is acknowledged by a broad community of solid state chemists and physicists that the inclusion of a fraction of Fock exchange in the exchange-correlation potential of the density functional theory is key to a better description of many properties of materials (electronic, magnetic, mechanical, spintronic, lattice-dynamical, etc.). Here, the main developments made to the program in the last five years (i.e., since the previous release, Crystal17) are presented and some of their most noteworthy applications reviewed.


Toward Physics-Based Solubility Computation for Pharmaceuticals to Rival Informatics.

  • Daniel J Fowles‎ et al.
  • Journal of chemical theory and computation‎
  • 2021‎

We demonstrate that physics-based calculations of intrinsic aqueous solubility can rival cheminformatics-based machine learning predictions. A proof-of-concept was developed for a physics-based approach via a sublimation thermodynamic cycle, building upon previous work that relied upon several thermodynamic approximations, notably the 2RT approximation, and limited conformational sampling. Here, we apply improvements to our sublimation free-energy model with the use of crystal phonon mode calculations to capture the contributions of the vibrational modes of the crystal. Including these improvements with lattice energies computed using the model-potential-based Ψmol method leads to accurate estimates of sublimation free energy. Combining these with hydration free energies obtained from either molecular dynamics free-energy perturbation simulations or density functional theory calculations, solubilities comparable to both experiment and informatics predictions are obtained. The application to coronene, succinic acid, and the pharmaceutical desloratadine shows how the methods must be adapted for the adoption of different conformations in different phases. The approach has the flexibility to extend to applications that cannot be covered by informatics methods.


Bayesian Physics-Based Modeling of Tau Propagation in Alzheimer's Disease.

  • Amelie Schäfer‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression.


scTOP: physics-inspired order parameters for cellular identification and visualization.

  • Maria Yampolskaya‎ et al.
  • Development (Cambridge, England)‎
  • 2023‎

Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types. scTOP can accurately classify cells, visualize developmental trajectories and assess the fidelity of engineered cells. Importantly, scTOP does this without feature selection, statistical fitting or dimensional reduction (e.g. uniform manifold approximation and projection, principle components analysis, etc.). We illustrate the power of scTOP using human and mouse datasets. By reanalyzing mouse lung data, we characterize a transient hybrid alveolar type 1/alveolar type 2 cell population. Visualizations of lineage tracing hematopoiesis data using scTOP confirm that a single clone can give rise to multiple mature cell types. We assess the transcriptional similarity between endogenous and donor-derived cells in the context of murine pulmonary cell transplantation. Our results suggest that physics-inspired order parameters can be an important tool for understanding differentiation and characterizing engineered cells. scTOP is available as an easy-to-use Python package.


A statistical physics perspective on alignment-independent protein sequence comparison.

  • Amit K Chattopadhyay‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly.


Unfolding the physics of URu2Si2 through silicon to phosphorus substitution.

  • A Gallagher‎ et al.
  • Nature communications‎
  • 2016‎

The heavy fermion intermetallic compound URu2Si2 exhibits a hidden-order phase below the temperature of 17.5 K, which supports both anomalous metallic behavior and unconventional superconductivity. While these individual phenomena have been investigated in detail, it remains unclear how they are related to each other and to what extent uranium f-electron valence fluctuations influence each one. Here we use ligand site substituted URu2Si(2-x)P(x) to establish their evolution under electronic tuning. We find that while hidden order is monotonically suppressed and destroyed for x≤0.035, the superconducting strength evolves non-monotonically with a maximum near x≈0.01 and that superconductivity is destroyed near x≈0.028. This behavior reveals that hidden order depends strongly on tuning outside of the U f-electron shells. It also suggests that while hidden order provides an environment for superconductivity and anomalous metallic behavior, it's fluctuations may not be solely responsible for their progression.


Report on the American Association of Medical Physics Undergraduate Fellowship Programs.

  • Jennifer B Smilowitz‎ et al.
  • Journal of applied clinical medical physics‎
  • 2013‎

The American Association of Physicists in Medicine (AAPM) sponsors two summer undergraduate research programs to attract top performing undergraduate students into graduate studies in medical physics: the Summer Undergraduate Fellowship Program (SUFP) and the Minority Undergraduate Summer Experience (MUSE). Undergraduate research experience (URE) is an effective tool to encourage students to pursue graduate degrees. The SUFP and MUSE are the only medical physics URE programs. From 2001 to 2012, 148 fellowships have been awarded and a total of $608,000 has been dispersed to fellows. This paper reports on the history, participation, and status of the programs. A review of surveys of past fellows is presented. Overall, the fellows and mentors are very satisfied with the program. The efficacy of the programs is assessed by four metrics: entry into a medical physics graduate program, board certification, publications, and AAPM involvement. Sixty-five percent of past fellow respondents decided to pursue a graduate degree in medical physics as a result of their participation in the program. Seventy percent of respondents are currently involved in some educational or professional aspect of medical physics. Suggestions for future enhancements to better track and maintain contact with past fellows, expand funding sources, and potentially combine the programs are presented.


Moral dynamics: Grounding moral judgment in intuitive physics and intuitive psychology.

  • Felix A Sosa‎ et al.
  • Cognition‎
  • 2021‎

When holding others morally responsible, we care about what they did, and what they thought. Traditionally, research in moral psychology has relied on vignette studies, in which a protagonist's actions and thoughts are explicitly communicated. While this research has revealed what variables are important for moral judgment, such as actions and intentions, it is limited in providing a more detailed understanding of exactly how these variables affect moral judgment. Using dynamic visual stimuli that allow for a more fine-grained experimental control, recent studies have proposed a direct mapping from visual features to moral judgments. We embrace the use of visual stimuli in moral psychology, but question the plausibility of a feature-based theory of moral judgment. We propose that the connection from visual features to moral judgments is mediated by an inference about what the observed action reveals about the agent's mental states, and what causal role the agent's action played in bringing about the outcome. We present a computational model that formalizes moral judgments of agents in visual scenes as computations over an intuitive theory of physics combined with an intuitive theory of mind. We test the model's quantitative predictions in three experiments across a wide variety of dynamic interactions.


Heavy fermions vs doped Mott physics in heterogeneous Ta-dichalcogenide bilayers.

  • Lorenzo Crippa‎ et al.
  • Nature communications‎
  • 2024‎

Controlling and understanding electron correlations in quantum matter is one of the most challenging tasks in materials engineering. In the past years a plethora of new puzzling correlated states have been found by carefully stacking and twisting two-dimensional van der Waals materials of different kind. Unique to these stacked structures is the emergence of correlated phases not foreseeable from the single layers alone. In Ta-dichalcogenide heterostructures made of a good metallic "1H"- and a Mott insulating "1T"-layer, recent reports have evidenced a cross-breed itinerant and localized nature of the electronic excitations, similar to what is typically found in heavy fermion systems. Here, we put forward a new interpretation based on first-principles calculations which indicates a sizeable charge transfer of electrons (0.4-0.6 e) from 1T to 1H layers at an elevated interlayer distance. We accurately quantify the strength of the interlayer hybridization which allows us to unambiguously determine that the system is much closer to a doped Mott insulator than to a heavy fermion scenario. Ta-based heterolayers provide therefore a new ground for quantum-materials engineering in the regime of heavily doped Mott insulators hybridized with metallic states at a van der Waals distance.


Physics of Ice Nucleation and Antinucleation: Action of Ice-Binding Proteins.

  • Bogdan S Melnik‎ et al.
  • Biomolecules‎
  • 2023‎

Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process. Unlike most other works, our paper is focused on ice nucleation and not on the behavior of the already-nucleated ice, its growth, etc. The nucleation kinetics is studied both theoretically and experimentally. In the theoretical section, special attention is paid to surfaces that bind ice stronger than water and thus can be "ice nucleators", potent or relatively weak; but without them, ice cannot be nucleated in any way in calm water at temperatures above -30 °C. For experimental studies, we used: (i) the ice-binding protein mIBP83, which is a previously constructed mutant of a spruce budworm Choristoneura fumiferana antifreeze protein, and (ii) a hyperactive ice-binding antifreeze protein, RmAFP1, from a longhorn beetle Rhagium mordax. We have shown that RmAFP1 (but not mIBP83) definitely decreased the ice nucleation temperature of water in test tubes (where ice originates at much higher temperatures than in bulk water and thus the process is affected by some ice-nucleating surfaces) and, most importantly, that both of the studied ice-binding proteins significantly decreased the ice nucleation temperature that had been significantly raised in the presence of potent ice nucleators (CuO powder and ice-nucleating bacteria Pseudomonas syringae). Additional experiments on human cells have shown that mIBP83 is concentrated in some cell regions of the cooled cells. Thus, the ice-binding protein interacts not only with ice, but also with other sites that act or potentially may act as ice nucleators. Such ice-preventing interaction may be the crucial biological task of ice-binding proteins.


Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.

  • Amy M Wen‎ et al.
  • Bioconjugate chemistry‎
  • 2015‎

Virus-based nanoparticles (VNPs) have been used for a wide range of applications, spanning basic materials science and translational medicine. Their propensity to self-assemble into precise structures that offer a three-dimensional scaffold for functionalization has led to their use as optical contrast agents and related biophotonics applications. A number of fluorescently labeled platforms have been developed and their utility in optical imaging demonstrated, yet their optical properties have not been investigated in detail. In this study, two VNPs of varying architectures were compared side-by-side to determine the impact of dye density, dye localization, conjugation chemistry, and microenvironment on the optical properties of the probes. Dyes were attached to icosahedral cowpea mosaic virus (CPMV) and rod-shaped tobacco mosaic virus (TMV) through a range of chemistries to target particular side chains displayed at specific locations around the virus. The fluorescence intensity and lifetime of the particles were determined, first using photochemical experiments on the benchtop, and second in imaging experiments using tissue culture experiments. The virus-based optical probes were found to be extraordinarily robust under ultrashort, pulsed laser light conditions with a significant amount of excitation energy, maintaining structural and chemical stability. The most effective fluorescence output was achieved through dye placement at optimized densities coupled to the exterior surface avoiding conjugated ring systems. Lifetime measurements indicate that fluorescence output depends not only on spacing the fluorophores, but also on dimer stacking and configurational changes leading to radiationless relaxation-and these processes are related to the conjugation chemistry and nanoparticle shape. For biological applications, the particles were also examined in tissue culture, from which it was found that the optical properties differed from those found on the benchtop due to effects from cellular processes and uptake kinetics. Data indicate that fluorescent cargos are released in the endolysosomal compartment of the cell targeted by the virus-based optical probes. These studies provide insight into the optical properties and fates of fluorescent proteinaceous imaging probes. The cellular release of cargo has implications not only for virus-based optical probes, but also for drug delivery and release systems.


Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

  • Ryan P Womack‎
  • PloS one‎
  • 2015‎

This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.


Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.

  • Amin Espah Borujeni‎ et al.
  • Nucleic acids research‎
  • 2016‎

Riboswitches are shape-changing regulatory RNAs that bind chemicals and regulate gene expression, directly coupling sensing to cellular actuation. However, it remains unclear how their sequence controls the physics of riboswitch switching and activation, particularly when changing the ligand-binding aptamer domain. We report the development of a statistical thermodynamic model that predicts the sequence-structure-function relationship for translation-regulating riboswitches that activate gene expression, characterized inside cells and within cell-free transcription-translation assays. Using the model, we carried out automated computational design of 62 synthetic riboswitches that used six different RNA aptamers to sense diverse chemicals (theophylline, tetramethylrosamine, fluoride, dopamine, thyroxine, 2,4-dinitrotoluene) and activated gene expression by up to 383-fold. The model explains how aptamer structure, ligand affinity, switching free energy and macromolecular crowding collectively control riboswitch activation. Our model-based approach for engineering riboswitches quantitatively confirms several physical mechanisms governing ligand-induced RNA shape-change and enables the development of cell-free and bacterial sensors for diverse applications.


Current structure predictors are not learning the physics of protein folding.

  • Carlos Outeiral‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2022‎

Motivation. Predicting the native state of a protein has long been considered a gateway problem for understanding protein folding. Recent advances in structural modeling driven by deep learning have achieved unprecedented success at predicting a protein's crystal structure, but it is not clear if these models are learning the physics of how proteins dynamically fold into their equilibrium structure or are just accurate knowledge-based predictors of the final state. Results. In this work, we compare the pathways generated by state-of-the-art protein structure prediction methods to experimental data about protein folding pathways. The methods considered were AlphaFold 2, RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta. We find evidence that their simulated dynamics capture some information about the folding pathway, but their predictive ability is worse than a trivial classifier using sequence-agnostic features like chain length. The folding trajectories produced are also uncorrelated with experimental observables such as intermediate structures and the folding rate constant. These results suggest that recent advances in structure prediction do not yet provide an enhanced understanding of protein folding. Availability. The data underlying this article are available in GitHub at https://github.com/oxpig/structure-vs-folding/.


Artificial physics engine for real-time inverse dynamics of arm and hand movement.

  • Mykhailo Manukian‎ et al.
  • PloS one‎
  • 2023‎

Simulating human body dynamics requires detailed and accurate mathematical models. When solved inversely, these models provide a comprehensive description of force generation that considers subject morphology and can be applied to control real-time assistive technology, for example, orthosis or muscle/nerve stimulation. Yet, model complexity hinders the speed of its computations and may require approximations as a mitigation strategy. Here, we use machine learning algorithms to provide a method for accurate physics simulations and subject-specific parameterization. Several types of artificial neural networks (ANNs) with varied architecture were tasked to generate the inverse dynamic transformation of realistic arm and hand movement (23 degrees of freedom). Using a physical model, we generated representative limb movements with bell-shaped end-point velocity trajectories within the physiological workspace. This dataset was used to develop ANN transformations with low torque errors (less than 0.1 Nm). Multiple ANN implementations using kinematic sequences solved accurately and robustly the high-dimensional kinematic Jacobian and inverse dynamics of arm and hand. These results provide further support for the use of ANN architectures that use temporal trajectories of time-delayed values to make accurate predictions of limb dynamics.


Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy.

  • Kevin M Roccapriore‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Physics-driven discovery in an autonomous experiment has emerged as a dream application of machine learning in physical sciences. Here, this work develops and experimentally implements a deep kernel learning (DKL) workflow combining the correlative prediction of the target functional response and its uncertainty from the structure, and physics-based selection of acquisition function, which autonomously guides the navigation of the image space. Compared to classical Bayesian optimization (BO) methods, this approach allows to capture the complex spatial features present in the images of realistic materials, and dynamically learn structure-property relationships. In combination with the flexible scalarizer function that allows to ascribe the degree of physical interest to predicted spectra, this enables physical discovery in automated experiment. Here, this approach is illustrated for nanoplasmonic studies of nanoparticles and experimentally implemented in a truly autonomous fashion for bulk- and edge plasmon discovery in MnPS3 , a lesser-known beam-sensitive layered 2D material. This approach is universal, can be directly used as-is with any specimen, and is expected to be applicable to any probe-based microscopic techniques including other STEM modalities, scanning probe microscopies, chemical, and optical imaging.


Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics.

  • Xiao Ning‎ et al.
  • Viruses‎
  • 2023‎

Modelling and predicting the behaviour of infectious diseases is essential for early warning and evaluating the most effective interventions to prevent significant harm. Compartmental models produce a system of ordinary differential equations (ODEs) that are renowned for simulating the transmission dynamics of infectious diseases. However, the parameters in compartmental models are often unknown, and they can even change over time in the real world, making them difficult to determine. This study proposes an advanced artificial intelligence approach based on physics-informed neural networks (PINNs) to estimate time-varying parameters from given data for the compartmental model. Our proposed PINNs method captures the complex dynamics of COVID-19 by integrating a modified Susceptible-Exposed-Infectious-Recovered-Death (SEIRD) compartmental model with deep neural networks. Specifically, we modelled the system of ODEs as one network and the time-varying parameters as another network to address significant unknown parameters and limited data. Such structure of the PINNs method is in line with the prior epidemiological correlations and comprises the mismatch between available data and network output and the residual of ODEs. The experimental findings on real-world reported data data have demonstrated that our method robustly and accurately learns the dynamics and forecasts future states. Moreover, as more data becomes available, our proposed PINNs method can be successfully extended to other regions and infectious diseases.


Integration of physics and biology: synergistic undergraduate education for the 21st century.

  • Terry Woodin‎ et al.
  • CBE life sciences education‎
  • 2013‎

This is an exciting time to be a biologist. The advances in our field and the many opportunities to expand our horizons through interaction with other disciplines are intellectually stimulating. This is as true for people tasked with helping the field move forward through support of research and education projects that serve the nation's needs as for those carrying out that research and educating the next generation of biologists. So, it is a pleasure to contribute to this edition of CBE-Life Sciences Education. This column will cover three aspects of the interactions of physics and biology as seen from the viewpoint of four members of the Division of Undergraduate Education of the National Science Foundation. The first section places the material to follow in context. The second reviews some of the many interdisciplinary physics-biology projects we support. The third highlights mechanisms available for supporting new physics-biology undergraduate education projects based on ideas that arise, focusing on those needing and warranting outside support to come to fruition.


Efficient machine learning of solute segregation energy based on physics-informed features.

  • Zongyi Ma‎ et al.
  • Scientific reports‎
  • 2023‎

Machine learning models solute segregation energy based on appropriate features of segregation sites. Lumping many features together can give a decent accuracy but may suffer the curse of dimensionality. Here, we modeled the segregation energy with efficient machine learning using physics-informed features identified based on solid physical understanding. The features outperform the many features used in the literature work and the spectral neighbor analysis potential features by giving the best balance between accuracy and feature dimension, with the extent depending on machine learning algorithms and alloy systems. The excellence is attributed to the strong relevance to segregation energies and the mutual independence ensured by physics. In addition, the physics-informed features contain much less redundant information originating from the energy-only-concerned calculations in equilibrium states. This work showcases the merit of integrating physics in machine learning from the perspective of feature identification other than that of physics-informed machine learning algorithms.


Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation.

  • Raymond J Acciavatti‎ et al.
  • Cancers‎
  • 2021‎

Digital mammography has seen an explosion in the number of radiomic features used for risk-assessment modeling. However, having more features is not necessarily beneficial, as some features may be overly sensitive to imaging physics (contrast, noise, and image sharpness). To measure the effects of imaging physics, we analyzed the feature variation across imaging acquisition settings (kV, mAs) using an anthropomorphic phantom. We also analyzed the intra-woman variation (IWV), a measure of how much a feature varies between breasts with similar parenchymal patterns-a woman's left and right breasts. From 341 features, we identified "robust" features that minimized the effects of imaging physics and IWV. We also investigated whether robust features offered better case-control classification in an independent data set of 575 images, all with an overall BI-RADS® assessment of 1 (negative) or 2 (benign); 115 images (cases) were of women who developed cancer at least one year after that screening image, matched to 460 controls. We modeled cancer occurrence via logistic regression, using cross-validated area under the receiver-operating-characteristic curve (AUC) to measure model performance. Models using features from the most-robust quartile of features yielded an AUC = 0.59, versus 0.54 for the least-robust, with p < 0.005 for the difference among the quartiles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: