Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 55 papers

MicroRNA-431 serves as a tumor inhibitor in breast cancer through targeting FGF9.

  • Wei Wang‎ et al.
  • Oncology letters‎
  • 2020‎

Breast cancer has become an important public health problem. Moreover, the functions of microRNA-431 (miR-431) have been detected in human cancers other than breast cancer. Hence, we investigated the role of miR-431 in progression of breast cancer. RT-qPCR and Western blot analysis were performed to assess expression of miR-431 and genes. The regulatory mechanism of miR-431 was investigated using MTT, Transwell and luciferase reporter assay. Decreased miR-431 expression was identified in breast cancer, which was related to aggressive behavior. Furthermore, miR-431 restrained cell proliferation, metastasis and EMT in breast cancer. miR-431 induced apoptosis through enhancing Bax expression. In addition, miR-431 was found to directly target FGF9. Moreover, upregulation of FGF9 impaired the anti-tumor effect of miR-431 in breast cancer. miR-431 restrained cell viability and metastasis in breast cancer through targeting FGF9, indicating that miR-431 serves as a tumor inhibitor in breast cancer.


Low microRNA-622 expression predicts poor prognosis and is associated with ZEB2 in glioma.

  • Qian Song‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

MicroRNAs have been recently reported to play an important role in tumorigenesis and progression in several forms of tumors. Previous studies have shown that microRNA-622 (miR-622) was associated with glioma proliferation and invasion. However, the clinical significance of miR-622 in glioma has not been elucidated. The aim of our study was to investigate the clinical values of miR-622, as well as investigate the potential molecular mechanisms in glioma.


Clinical significance of ring finger protein 2 high expression in skin squamous cell carcinoma.

  • Bai Ling‎ et al.
  • Oncology letters‎
  • 2020‎

Although ring finger protein 2 (RNF2) serves an important role in the occurrence, development and regulation of various types of cancer, RNF2 expression in skin squamous cell carcinoma (SCC) remains unknown. The aim of the present study was to investigate the role of RNF2 expression in SCC and adjacent tissues from patients. The protein and gene expression levels of RNF2 in SCC and adjacent tissues were detected by immunohistochemistry (IHC), western blot analysis and semi-quantitative reverse transcription (RT) PCR. Single factor analysis was used to study the association between RNF2 expression level and the clinicopathological characteristics of patients with SCC. Multifactor Cox survival analysis was used to examine the association between RNF2 expression and the overall survival rate of postoperative patients with SCC. The results from IHC staining demonstrated that the positive expression rate of RNF2 was 84.68% (210/248) and 56.05% (139/248) in SCC and in adjacent tissues, respectively. Furthermore, results from western blot analysis demonstrated that RNF2 protein expression in SCC tissues was significantly higher compared with that in the adjacent tissues (P<0.05). The positive rate of RNF2 mRNA in SCC was 81.05% (201/248), which was significantly higher compared with that in the adjacent tissues 54.44% (135/248; P<0.05). Furthermore, RNF2 protein and gene expression levels were associated with tumor diameter, tumor stage, tumor metastasis and the degree of tumor differentiation in patients with SCC. Patients exhibiting higher RNF2 protein expression in SCC tissues had a significantly shorter disease-specific survival rate compared with patients with low RNF2 expression. In addition, RNF2 protein expression, tumor diameter, tumors site and tumor stage were independent factors affecting the overall survival rate of postoperative patients. High protein and gene expression levels of RNF2 in SCC tissues may be associated with the occurrence and development of SCC and prognosis of patients. The results form this study may serve the development of novel therapeutic options and diagnostic strategies for patients with SCC.


High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway.

  • Hongji Liu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

High pressure is the most important factor inducing retinal ganglion cell (RGC) apoptosis. However, the underlying mechanisms remain obscure. The present study investigated the effects of different levels of hydrostatic pressure (HP) on RGCs and the potential mechanisms involved. Primary cultured rat RGCs were exposed to five levels of HP (0, 20, 40, 60 and 80 mmHg) for 24 h. Morphological changes in RGCs were observed. The viability and apoptosis rate of RGCs were detected using a Cell Counting Kit‑8 assay and Annexin V‑fluorescein isothiocyanate/propidium iodide flow cytometry, respectively. Western blotting, reverse transcription‑quantitative polymerase chain reaction and immunofluorescence were used to detect the expression and mRNA levels of nerve growth factor (NGF), protein kinase B (AKT), apoptosis signal‑regulating kinase 1 (ASK1), forkhead box O1 (FoxO1) and cAMP response element binding protein (CREB). In the 0‑ and 20‑mmHg groups, there were no apoptotic morphological changes. In the 40 mmHg group, parts of the cell were shrunken or disrupted. In the 60 mmHg group, neurite extension was weakened and parts of the cells were disintegrating or dying. In the 80 mmHg group, the internal structures of the cells were not visible at all. The apoptosis rates of RGCs were significantly higher and the viability rates significantly lower under 40, 60 and 80 mmHg compared with under 0 or 20 mmHg (all P<0.01). The expression and mRNA levels of NGF, AKT and CREB decreased in a dose‑dependent manner in the 40‑, 60‑ and 80‑mmHg groups (all P<0.05), but those of ASK1 and FoxO1 increased in a dose‑dependent manner (all P<0.05). Interestingly, the alterations to the expression and mRNA levels of CREB were significantly larger compared with the changes in ASK1 or FoxO1 in the 40‑, 60‑ and 80‑mmHg groups (all P<0.01). The results of the present study demonstrate that elevated HP of 40, 60 or 80 mmHg reduces viability and induces apoptosis in RGCs, which may occur through effects on the NGF/ASK1/FoxO1 and NGF/AKT/CREB pathways, of which the latter is more strongly affected.


Cyclophosphamide Regulates N6-Methyladenosine and m6A RNA Enzyme Levels in Human Granulosa Cells and in Ovaries of a Premature Ovarian Aging Mouse Model.

  • Boxian Huang‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Cyclophosphamide (CTX) is one of the most frequently used alkylating anticancer drugs. CTX is associated with reproductive failure and premature ovarian insufficiency (POI) or premature ovarian aging. Much less is known about the mechanism by which CTX affects female fertility through N6-methyladenosine (m6A) levels. In this case-controlled study, we employed human ovarian granulosa cells and mice as experimental models in vitro and in vivo. m6A test kit was developed to determine the content in RNA, and qPCR and western blot were used to examine the expression levels of RNA methyltransferases, demethylases, and effectors. Results showed that CTX increased the m6A level in a time- and concentration-dependent manner. The expression levels of RNA methyltransferases were significantly higher in the CTX treatment group than in the control group with time and concentration dependence, except for RBM15 and WTAP. CTX significantly inhibited the expression levels of RNA demethylase FTO in a time- and concentration-dependent manner but not ALKBH5. The expression levels of RNA effectors were reduced by CTX in a time- and concentration-dependent manner. These data suggest that CTX increased the expression levels of m6A and may be responsible for the increase in RNA methyltransferases and decrease in RNA demethylases in a time- and concentration-dependent manner.


miR-483-3p, Mediated by KLF9, Functions as Tumor Suppressor in Testicular Seminoma via Targeting MMP9.

  • Lei Zhang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Seminoma (SEM) is the most frequent testicular germ cell tumor with a high incidence in young men. The present study aims to explore the function and regulatory mechanism of miR-483-3p in SEM.


Differentiation antagonizing non-protein coding RNA modulates the proliferation, migration, and angiogenesis of glioma cells by targeting the miR-216a/LGR5 axis and the PI3K/AKT signaling pathway.

  • Wei Wang‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Purpose: DANCR plays an important role in various types of cancer. However, its role in gliomas remains unclear. In the present study, we aimed to investigate the mechanism underlying the role of DANCR in gliomas. Methods: DANCR expression was measured by qRT-PCR, and expression of LGR5, PI3K, AKT, and phosphorylated AKT (p-AKT) was detected by western blotting. The combination of miR-216a and DANCR was quantified by Luciferase reporter assays. Proliferation, apoptosis and cell cycle, migration and invasion, and angiogenesis of glioma cells were measured by MTT, flow cytometry, Transwell, and Tube formation assays, respectively. Results: DANCR expression was significantly higher in glioma cells than in normal human astrocytes. Silencing of DANCR inhibited proliferation, migration, invasion, and angiogenesis of glioma cells, promoted apoptosis, blocked the cell cycle at the G1/S transition, and reduced LGR5, PI3K, and p-AKT expression. We identified miR-216a as a direct target of DANCR. Silencing of DANCR in glioma cells increased miR-216a expression. Further, miR-216a suppression increased proliferation, migration, invasion, and angiogenesis and inhibited apoptosis of glioma cells transfected with DANCR-targeting siRNA. In addition, miR-216a suppression compromised inhibition of the G1/S transition caused by DANCR silencing. Furthermore, suppression of miR-216a increased accumulation of LGR5, PI3K, AKT, and p-AKT in glioma cells transfected with DANCR-targeting siRNA. Conclusion: DANCR modulates growth and metastasis by targeting the miR-216a/LGR5 axis and PI3K/AKT signaling pathway.


miR‑489 promotes apoptosis and inhibits invasiveness of glioma cells by targeting PAK5/RAF1 signaling pathways.

  • Wei Wang‎ et al.
  • Oncology reports‎
  • 2019‎

Glioma patients receiving therapy are at a high risk of relapse and rapid progression and, thus, more effective treatments are required. The aim of the present study was to determine the suppressive role of miR‑489 as an alternative therapeutic target for preventing glioma progression. The results of the present study demonstrated that patients with relatively lower levels of expression of miR‑489 had more favorable clinical outcomes. Furthermore, miR‑489 expression was inversely correlated with p21‑activated kinase 5 (PAK5) mRNA expression levels in glioma specimens. A dual luciferase reporter assay revealed that miR‑489 suppressed PAK5 expression by directly targeting the PAK5 3'‑untranslated region. The effects of miR‑489 on cell viability were measured using MTT and Cell Counting Kit‑8 assays. The results demonstrated that ectopic expression of miR‑489 mimic decreased cell viability by interfering with cyclin D1 and c‑Myc signaling. Additionally, the effect of miR‑489 on apoptosis was determined using Hoechst 33258 staining and flow cytometry. The results demonstrated that miR‑489 decreased the activity of RAF1, reduced Bcl‑2 and promoted Bax expression, resulting in increased cell apoptosis. Furthermore, the effect of miR‑489 mimic on cellular motility was assessed using migration and invasion assays. miR‑489 was shown to abolish the PAK5/RAF1/MMP2 pathway, resulting in decreased cell invasion ability. These results indicated that miR‑489 may be involved in PAK5‑mediated regulation of glioma progression, demonstrating the potential therapeutic benefits of targeting miR‑489 in glioma.


A-80426 suppresses CFA-induced inflammatory pain by suppressing TRPV1 activity via NFκB and PI3K pathways in mice.

  • Xiaomei Ling‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2023‎

Pain is associated with many circumstances, including inflammatory reactions, which arise from modification of the features of signaling pathways. α2-adrenergic receptor antagonists are widely utilized in narcosis. Here, the authors focused on the narcotic effect of A-80426 (A8) on Complete Freund's Adjuvant (CFA) injections-triggered chronic inflammation pain in WT and TRPV1-/- mice and explored whether its antinociceptive impact was modulated via Transient Receptor Potential Vanilloid 1 (TRPV1).


Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis.

  • Xuan Jiang‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2023‎

Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown.


MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2.

  • Wei Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Pancreatic carcinoma (PC) is a rapidly progressive, fatal malignant tumor with the poorest prognosis among all major carcinoma types. MicroRNAs (miRNAs/miRs) have been indicated to be key post-transcriptional regulatory factors, which are involved in cancer development. The present study was designed to investigate the effect of miR-23a on PC cell proliferation, metastasis and apoptosis. The expression of miR-23a was detected in a normal pancreatic ductal epithelial cell line and three PC cell lines, and miR-23a inhibitor or mimics were transfected into the Panc-1 and MiaPaCa2 PC cells. The association between miR-23a and tissue factor pathway inhibitor (TFPI)-2 was examined using a luciferase reporter assay. MTT and flow cytometry assays were used to assess cell viability and apoptosis, respectively. Furthermore, wound-healing, Transwell and Matrigel assays were used to evaluate cell migration and invasion abilities, and the protein expression level of TFPI-2 was determined using western blot analysis. The results of the present study revealed that miR-23a was upregulated in PC cells. Furthermore, TFPI-2 was identified as a downstream target of miR-23a, and TFPI-2 expression was found to be increased following miR-23a knockdown. In addition, functional assays revealed that downregulation of miR-23a decreased PC cell proliferation, migration and invasiveness and promoted cell apoptosis, while miR-23a overexpression exerted the opposite effects. Furthermore, TFPI-2 knockdown rescued the biological effects on PC cells, which were induced by miR-23a knockdown. The results of the present study indicated that miR-23a negatively modulated TFPI-2 expression in vitro and enhanced the malignant phenotypes of PC cells. Therefore, miR-23a may be a potential marker and/or target for the diagnosis and treatment of PC.


Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H2O2-disulfide HMGB1 in macrophages.

  • Shuai Zhao‎ et al.
  • Redox biology‎
  • 2023‎

As the essential amino acids, branched-chain amino acid (BCAA) from diets is indispensable for health. BCAA supplementation is often recommended for patients with consumptive diseases or healthy people who exercise regularly. Latest studies and ours reported that elevated BCAA level was positively correlated with metabolic syndrome, diabetes, thrombosis and heart failure. However, the adverse effect of BCAA in atherosclerosis (AS) and its underlying mechanism remain unknown. Here, we found elevated plasma BCAA level was an independent risk factor for CHD patients by a human cohort study. By employing the HCD-fed ApoE-/- mice of AS model, ingestion of BCAA significantly increased plaque volume, instability and inflammation in AS. Elevated BCAA due to high dietary BCAA intake or BCAA catabolic defects promoted AS progression. Furthermore, BCAA catabolic defects were found in the monocytes of patients with CHD and abdominal macrophages in AS mice. Improvement of BCAA catabolism in macrophages alleviated AS burden in mice. The protein screening assay revealed HMGB1 as a potential molecular target of BCAA in activating proinflammatory macrophages. Excessive BCAA induced the formation and secretion of disulfide HMGB1 as well as subsequent inflammatory cascade of macrophages in a mitochondrial-nuclear H2O2 dependent manner. Scavenging nuclear H2O2 by overexpression of nucleus-targeting catalase (nCAT) effectively inhibited BCAA-induced inflammation in macrophages. All of the results above illustrate that elevated BCAA promotes AS progression by inducing redox-regulated HMGB1 translocation and further proinflammatory macrophage activation. Our findings provide novel insights into the role of animo acids as the daily dietary nutrients in AS development, and also suggest that restricting excessive dietary BCAA consuming and promoting BCAA catabolism may serve as promising strategies to alleviate and prevent AS and its subsequent CHD.


Si-Miao-Yong-An Decoction Protects Against Cardiac Hypertrophy and Dysfunction by Inhibiting Platelet Aggregation and Activation.

  • Congping Su‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Objective: The aim of this study was to determine whether Si-Miao-Yong-An decoction (SMYAD) could ameliorate pressure overload-induced heart hypertrophy and its mechanisms. Methods: C57BL/6 mice were subjected to either sham or transverse aortic constriction (TAC) surgery to induce heart hypertrophy. SMYAD (14.85 g/kg/day, ig) or captopril (16.5 mg/kg/day, ig) was administered to the mice for 4 weeks. Cardiac function was evaluated based on echocardiography. Heart hypertrophy was detected using hematoxylin and eosin or wheat germ agglutinin staining. Protein expression of CD41, CD61, and P-selectin were measured with Western blot and immunohistochemistry. The expression levels of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, β-thromboglobulin, and von Willebrand factor were evaluated by quantitative polymerase chain reaction. Results: Four weeks after TAC, mice developed exaggerated cardiac hypertrophy and demonstrated a strong decrease in left ventricular ejection fraction compared with sham (29.9 ± 9.3% versus 66.0 ± 9.9%; P < 0.001). Conversely, SMYAD improved cardiac dysfunction with preserved left ventricular ejection fraction (66.5 ± 17.2%; P < 0.001). Shortening fraction was increased by SMYAD, while the left ventricular internal diameter and left ventricular volume were decreased in SMYAD group. SMYAD treatment significantly attenuated cardiac hypertrophy as reflected by the inhibition of atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain mRNA expression, and by the decreasing of cardiac myocyte cross-sectional area. Furthermore, Western blot and immunohistochemistry indicated that the protein expression of platelet aggregation markers (CD41 and CD61) and platelet activation marker (P-selectin) were significantly higher in model mice compared with control. These pathological alterations in TAC-induced mice were significantly ameliorated or blocked by SMYAD administration. Conclusions: Our results suggested that SMYAD exerted its effect by inhibiting platelet aggregation and activation as revealed by CD41/CD61/P-selectin downregulation. Inhibition the activation of the platelets might contribute to the therapeutic effect of SMYAD in failing heart.


Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer.

  • Lun Wu‎ et al.
  • Oncology letters‎
  • 2020‎

Circulating exosomal microRNAs (ex-miRNAs) are reflective of the characteristics of the tumor and are valuable biomarkers in different types of tumor. In addition, miRNAs serve important roles in tumor progression and metastasis. The present study aimed to investigate the circulating ex-miRNA-21 and miRNA-210 as novel biomarkers for patients with pancreatic cancer (PC). For this purpose, serum ex-miRNAs were extracted from the serum of patients with PC (n=30) and chronic pancreatitis (CP) (n=10) using an RNA isolation kit. For exosome identification in serum, transmission electron micrographs were used to determine crystalline structure, western blotting was used to identify exosomal markers, and NanoSight was used for nanoparticle characterization. The relative expression levels of ex-miRNAs were quantified using quantitative PCR and compared between patients with PC and CP. The expression levels of both ex-miRNA-21 and miRNA-210 were significantly higher in patients with PC compared with patients with CP (both P<0.001). However, no significant difference in the relative serum levels of free miR-21 and miR-210 was observed between the 2 groups of patients (both P>0.05). ex-miRNA-21 and miRNA-210 were associated with tumor stage, as well as other factors. The diagnostic potential of ex-miRNA-21 and miRNA-210 levels was 83 and 85%, respectively. In addition, when ex-miRNA and serum carbohydrate antigen 19-9 expression levels were combined, the accuracy increased to 90%. The present study identified that serum ex-miRNAs, miRNA-21 and miRNA-210 may be of value as potential biomarkers and therapeutic targets for the diagnosis and treatment of PC.


TTC36 inactivation induce malignant properties via Wnt-β-catenin pathway in gastric carcinoma.

  • Lei Song‎ et al.
  • Journal of Cancer‎
  • 2021‎

Objective: Tetratricopeptide repeat (TRP)-mediated cofactor proteins are involved in a wide range of cancers. TTC36 is little studied member of TRP subfamily. This study aimed to investigate the role of TTC36 in human gastric carcinoma (GC) and explore the potential underlying mechanisms. Methods: The analysis of TTC36 differential expression in GC was conducted using data from TCGA and a human tissue microarray. And effects of TTC36 expression on the prognosis of patients with gastric carcinoma were analyzed using the data from the GEO database. Lentivirus was transfected into the cell lines of AGS and BGC823 to construct overexpression and knocked down TTC36 cell model respectively. The effect of TTC36 expression on the growth, apoptosis and cell cycle of cells was explored in vitro. Downstream molecules were detected by western blotting. GSEA predicted signal pathway and related proteins were then detected. Results: TTC36 expression in human GC tissues was found significantly lower than that in adjacent normal tissues and closely related to clinical prognosis. The overexpression of TTC36 notably inhibited tumor progression, cell cycle G1/S transfer and increased apoptosis in AGS cells. Conversely, the opposite effects were observed when TTC36 was suppressed in BGC823 cells. The expression of cleaved caspase3, Survivin, cyclin D1 and c-Myc were consistent with the phenotype in TTC36 operated GC cell lines. Intriguingly, GSEA analysis predicted Wnt-β-catenin pathway involved in TTC36 induced effects in GC cells, expression of β-catenin and downstream molecules such as TCF4, c-jun and pAKT were found negative related to TTC36 expression in GC cells. Notably, treatment with the Wnt/β-catenin inhibitor XAV939 dramatically attenuated the effects of TTC36 in GC cells. Conclusion: These results signify a critical role for TTC36 as a tumor suppressor in gastric carcinoma via regulating Wnt-β-catenin pathway.


N-Acetyl-L-cysteine facilitates tendon repair and promotes the tenogenic differentiation of tendon stem/progenitor cells by enhancing the integrin α5/β1/PI3K/AKT signaling.

  • Kang Lu‎ et al.
  • BMC molecular and cell biology‎
  • 2023‎

Tendon injury is associated with oxidative stress, leading to reactive oxygen species (ROS) production and inflammation. N-acetyl-L-cysteine (NAC) is a potent antioxidant. However, how NAC affects the biological functions of tendon stem/progenitor cells (TSPCs) and tendon repair has not been clarified.  METHOD: The impacts of NAC on the viability, ROS production, and differentiation of TSPCs were determined with the cell counting kit-8, fluorescence staining, Western blotting, and immunofluorescence. The effect of NAC on gene transcription in TSPCs was analyzed by transcriptomes and bioinformatics and validated by Western blotting. The potential therapeutic effect of NAC on tendon repair was tested in a rat model of Achilles tendon injury.


Androgen promotes differentiation of PLZF+ spermatogonia pool via indirect regulatory pattern.

  • Jingjing Wang‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

Androgen plays a pivotal role in spermatogenesis, accompanying a question how androgen acts on germ cells in testis since germ cells lack of androgen receptors (AR). Promyelocytic leukemia zinc-finger (PLZF) is essential for maintenance of undifferentiated spermatogonia population which is terminologically called spermatogonia progenitor cells (SPCs).


Activation of the PACAP/PAC1 Signaling Pathway Accelerates the Repair of Impaired Spatial Memory Caused by an Ultradian Light Cycle.

  • Dejiao Xu‎ et al.
  • ASN neuro‎
  • 2023‎

The mechanism of light-induced spatial memory deficits, as well as whether rhythmic expression of the pituitary adenylyl cyclase-activating polypeptides (PACAP)-PAC1 pathway influenced by light is related to this process, remains unclear. Here, we aimed to investigate the role of the PACAP-PAC1 pathway in light-mediated spatial memory deficits. Animals were first housed under a T24 cycle (12 h light:12 h dark), and then light conditions were transformed to a T7 cycle (3.5 h light:3.5 h dark) for at least 4 weeks. The spatial memory function was assessed using the Morris water maze (MWM). In line with behavioral studies, rhythmic expression of the PAC1 receptor and glutamate receptors in the hippocampal CA1 region was assessed by western blotting, and electrophysiology experiments were performed to determine the influence of the PACAP-PAC1 pathway on neuronal excitability and synaptic signaling transmission. Spatial memory was deficient after mice were exposed to the T7 light cycle. Rhythmic expression of the PAC1 receptor was dramatically decreased, and the excitability of CA1 pyramidal cells was decreased in T7 cycle-housed mice. Compensation with PACAP1-38, a PAC1 receptor agonist, helped T7 cycle-housed mouse CA1 pyramidal cells recover neuronal excitability to normal levels, and cannulas injected with PACAP1-38 shortened the time to find the platform in MWM. Importantly, the T7 cycle decreased the frequency of AMPA receptor-mediated excitatory postsynaptic currents. In conclusion, the PACAP-PAC1 pathway is an important protective factor modulating light-induced spatial memory function deficits, affecting CA1 pyramidal cell excitability and excitatory synaptic signaling transmission.


Long Non-coding RNA ST8SIA6-AS1 Promotes Lung Adenocarcinoma Progression Through Sponging miR-125a-3p.

  • Qifeng Cao‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Emerging evidence suggests that long non-coding RNA (lncRNA) plays a critical role in human disease progression. Recently, a novel lncRNA ST8SIA6-AS1 was shown as an important driver in various cancer types. Nevertheless, its contribution to lung adenocarcinoma (LUAD) remains undocumented. Herein, we found that ST8SIA6-AS1 was frequently overexpressed in LUAD cell lines, tissues, and plasma. Depletion of ST8SIA6-AS1 significantly inhibited LUAD cell proliferation and invasion in vitro and tumor growth in vivo. In term of mechanism, ST8SIA6-AS1 was transcriptionally repressed by tumor suppressor p53, and ST8SIA6-AS1 was mainly located in the cytoplasm and could abundantly sponge miR-125a-3p to increase nicotinamide N-methyltransferase (NNMT) expression, thereby facilitating LUAD malignant progression. Clinically, high ST8SIA6-AS1 was positively correlated with larger tumor size, lymph node metastasis, and later TNM stage. Moreover, ST8SIA6-AS1 was identified as an excellent indicator for MM diagnosis and prognosis. Collectively, our data demonstrate that ST8SIA6-AS1 is a carcinogenic lncRNA in LUAD, and targeting the axis of ST8SIA6-AS1/miR-125a-3p/NNMT may be a promising treatment for LUAD patients.


Intranasal booster using an Omicron vaccine confers broad mucosal and systemic immunity against SARS-CoV-2 variants.

  • Qian Wang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2023‎

The highly contagious SARS-CoV-2 Omicron subvariants severely attenuated the effectiveness of currently licensed SARS-CoV-2 vaccines based on ancestral strains administered via intramuscular injection. In this study, we generated a recombinant, replication-incompetent human adenovirus type 5, Ad5-S-Omicron, that expresses Omicron BA.1 spike. Intranasal, but not intramuscular vaccination, elicited spike-specific respiratory mucosal IgA and residential T cell immune responses, in addition to systemic neutralizing antibodies and T cell immune responses against most Omicron subvariants. We tested intranasal Ad5-S-Omicron as a heterologous booster in mice that previously received intramuscular injection of inactivated ancestral vaccine. In addition to inducing serum broadly neutralizing antibodies, there was a significant induction of respiratory mucosal IgA and neutralizing activities against Omicron subvariants BA.1, BA.2, BA.5, BA.2.75, BF.7 as well as pre-Omicron strains Wildtype, Beta, and Delta. Serum and mucosal neutralizing activities against recently emerged XBB, BQ.1, and BQ.1.1 could also be detected but were much lower. Nasal lavage fluids from intranasal vaccination contained multimeric IgA that can bind to at least 10 spike proteins, including Omicron subvariants and pre-Omicron strains, and possessed broadly neutralizing activities. Intranasal vaccination using Ad5-S-Omicron or instillation of intranasal vaccinee's nasal lavage fluids in mouse nostrils protected mice against Omicron challenge. Taken together, intranasal Ad5-S-Omicron booster on the basis of ancestral vaccines can establish effective mucosal and systemic immunity against Omicron subvariants and multiple SARS-CoV-2 variants. This candidate vaccine warrants further development as a safe, effective, and user-friendly infection and transmission-blocking vaccine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: