Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 295 papers

Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function.

  • Eric Lécuyer‎ et al.
  • Cell‎
  • 2007‎

Although subcellular mRNA trafficking has been demonstrated as a mechanism to control protein distribution, it is generally believed that most protein localization occurs subsequent to translation. To address this point, we developed and employed a high-resolution fluorescent in situ hybridization procedure to comprehensively evaluate mRNA localization dynamics during early Drosophila embryogenesis. Surprisingly, of the 3370 genes analyzed, 71% of those expressed encode subcellularly localized mRNAs. Dozens of new and striking localization patterns were observed, implying an equivalent variety of localization mechanisms. Tight correlations between mRNA distribution and subsequent protein localization and function, indicate major roles for mRNA localization in nucleating localized cellular machineries. A searchable web resource documenting mRNA expression and localization dynamics has been established and will serve as an invaluable tool for dissecting localization mechanisms and for predicting gene functions and interactions.


Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury.

  • Tuoyi Li‎ et al.
  • Nature communications‎
  • 2018‎

Hyperhomocysteinemia (HHcy) is a risk factor for various cardiovascular diseases. However, the mechanism underlying HHcy-aggravated vascular injury remains unclear. Here we show that the aggravation of abdominal aortic aneurysm by HHcy is abolished in mice with genetic deletion of the angiotensin II type 1 (AT1) receptor and in mice treated with an AT1 blocker. We find that homocysteine directly activates AT1 receptor signalling. Homocysteine displaces angiotensin II and limits its binding to AT1 receptor. Bioluminescence resonance energy transfer analysis reveals distinct conformational changes of AT1 receptor upon binding to angiotensin II and homocysteine. Molecular dynamics and site-directed mutagenesis experiments suggest that homocysteine regulates the conformation of the AT1 receptor both orthosterically and allosterically by forming a salt bridge and a disulfide bond with its Arg167 and Cys289 residues, respectively. Together, these findings suggest that strategies aimed at blocking the AT1 receptor may mitigate HHcy-associated aneurysmal vascular injuries.


Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

  • Zheng Dong‎ et al.
  • Scientific reports‎
  • 2018‎

The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with PFDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (PFDR = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (PFDR = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, PFDR = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.


AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection.

  • Thomas Vierbuchen‎ et al.
  • Molecular cell‎
  • 2017‎

Enhancer elements are genomic regulatory sequences that direct the selective expression of genes so that genetically identical cells can differentiate and acquire the highly specialized forms and functions required to build a functioning animal. To differentiate, cells must select from among the ∼106 enhancers encoded in the genome the thousands of enhancers that drive the gene programs that impart their distinct features. We used a genetic approach to identify transcription factors (TFs) required for enhancer selection in fibroblasts. This revealed that the broadly expressed, growth-factor-inducible TFs FOS/JUN (AP-1) play a central role in enhancer selection. FOS/JUN selects enhancers together with cell-type-specific TFs by collaboratively binding to nucleosomal enhancers and recruiting the SWI/SNF (BAF) chromatin remodeling complex to establish accessible chromatin. These experiments demonstrate how environmental signals acting via FOS/JUN and BAF coordinate with cell-type-specific TFs to select enhancer repertoires that enable differentiation during development.


Whole-exome sequencing reveals novel mutations and epigenetic regulation in hypopharyngeal carcinoma.

  • Ping Wu‎ et al.
  • Oncotarget‎
  • 2017‎

Hypopharyngeal cancer (HPC) frequently presents at an advanced stage, resulting in poor prognosis. Although combined surgical therapy and chemoradiotherapy have improved the survival for patients with HPC over the past 3 decades, the mortality rate in late-stage diagnosis of HPC is unsatisfactory. In this study, we performed whole-exome sequencing (WES) of 23 hypopharyngeal tumor and paired adjacent normal tissue to identify novel candidate driver genes associated with hypopharyngeal carcinoma. We identified several copy number variants (CNVs) and 15 somatic mutation genes that were associated with hypopharyngeal carcinoma. Mutations in nine new genes (PRB4, NSD1, REC8, ZNF772, ZNF69, EI24, CYFIP2, NEFH, KRTAP4-5) were also indentified. PRB4 and NSD1 expression were significantly upregulated in hypopharyngeal carcinoma, which was confirmed in an independent cohort using IHC. There was a positive relationship between PRB4 and NSD1. Downregulation of PRB4 by siRNA could inhibit cell growth, colony formation and cell invasion. Notably, we here demonstrate that NSD1 could bind to the promoter regions of PRB4 and activate promoter activity by reducing the binding of H3K27me2 and increasing the binding of H3K36me2 on PRB4 promoter. In summary, we pinpoint the predominant mutations in hypopharyngeal carcinoma by WES, highlighting the substantial genetic alterations contributing to hypopharyngeal carcinoma tumorigenesis. We also indentify a novel epigenetically regulatory between PRB4 and NSD1 that contribute to hypopharyngeal carcinoma tumorigenesis. They may become potential prognostic biomarkers and therapeutic target for hypopharyngeal carcinoma treatment.


Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules.

  • Sebastian Markmiller‎ et al.
  • Cell‎
  • 2018‎

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Is there a dose-dependent effect of genetic susceptibility loci for gastric cancer on prognosis of the patients?

  • Lei Cheng‎ et al.
  • Oncotarget‎
  • 2017‎

Literature suggests that genetic variants associated with increased susceptibility to gastric cancer (GCa) are mostly located in genes involved in carcinogenesis and possibly tumor progression. Therefore, we hypothesize that high genetic susceptibility is also associated with prognosis of the patients. To test this hypothesis, we selected a total of 42 common genetic variants that were reportedly associated with GCa risk with a high level of evidence obtained from either genome-wide association studies (GWASs) or meta-analyses and performed survival analysis of patients used in a case-control analysis. We first used 1115 GCa cases and 1172 cancer-free controls of ethnic Han Chinese to construct a weighted genetic risk score (GRS). Then, we included 633 GCa cases with available clinical information, fit GRS in a fractional polynomial Cox proportional hazards regression model to investigate whether there is a dose-dependent effect of GRS on risk of death in survival analysis. Dynamic predictive value of genetic risk for prognosis was also calculated. The results showed that the increase of GRS had no effect on risk of death in these GCa patients. Compared with GCa patients with the medium GRS, there was no significant difference in survival in patients with either a low (P = 0.349) or a high (P = 0.847) GRS. The results unchanged when data were stratified by tumor stage and Lauren's classification. Time-dependent predictive value for prognosis in considering both clinical factors and GRS was comparable with that in considering clinical factors alone, for either all patients (P = 0.986) or stage- and Laruen type-based subgroups (P > 0.05 for all). In conclusion, higher polygenic susceptibility loci for GCa may not indicate worse prognosis of Chinese patients. Additional variants of relevant genes modulating GCa patients' survival need to be further identified.


Biochemical Fractionation of Time-Resolved Drosophila Embryos Reveals Similar Transcriptomic Alterations in Replication Checkpoint and Histone mRNA Processing Mutants.

  • Fabio Alexis Lefebvre‎ et al.
  • Journal of molecular biology‎
  • 2017‎

In higher eukaryotes, maternally provided gene products drive the initial stages of embryogenesis until the zygotic transcriptional program takes over, a developmental process called the midblastula transition (MBT). In addition to zygotic genome activation, the MBT involves alterations in cell-cycle length and the implementation of DNA damage/replication checkpoints that serve to monitor genome integrity. Previous work has shown that mutations affecting histone mRNA metabolism or DNA replication checkpoint factors severely impact developmental progression through the MBT, prompting us to characterize and contrast the transcriptomic impact of these genetic perturbations. In this study, we define gene expression profiles that mark early embryogenesis in Drosophila through transcriptomic analyses of developmentally staged (early syncytial versus late blastoderm) and biochemically fractionated (nuclear versus cytoplasmic) wild-type (wt) embryos. We then compare the transcriptomic profiles of loss-of-function mutants of the Chk1/Grapes replication checkpoint kinase and the stem loop binding protein (SLBP), a key regulator of replication-dependent histone mRNAs. Our analysis of RNA spatial and temporal distribution during embryogenesis offers new insights into the dynamics of early embryogenesis. In addition, we find that grp and Slbp mutant embryos display profound and highly similar defects in gene expression, most strikingly in zygotic gene expression, compromising the transition from a maternal to a zygotic regulation of development.


Expanded encyclopaedias of DNA elements in the human and mouse genomes.

  • ENCODE Project Consortium‎ et al.
  • Nature‎
  • 2020‎

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population.

  • Dayan Sun‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.


Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription.

  • Rui Xiao‎ et al.
  • Cell‎
  • 2019‎

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Comparative Performance of Creatinine-Based GFR Estimation Equations in Exceptional Longevity: The Rugao Longevity and Ageing Study.

  • Mengjing Wang‎ et al.
  • Clinical interventions in aging‎
  • 2020‎

Reduced kidney function has been associated with an increased risk for adverse outcomes. Accurate assessment of glomerular filtration rate (GFR) is key to diagnosis and management of kidney disfunction. Debate exists on the best GFR estimation equation for elderly people. This study aimed to compare the predictive validity and discriminative ability of four GFR equations in relation to 2-year and 6-year mortality in exceptional longevity (EL) (those over 95 years old with intact health) individuals and is an ideal model to address factors relating to life span and age-related diseases.


Exon-Mediated Activation of Transcription Starts.

  • Ana Fiszbein‎ et al.
  • Cell‎
  • 2019‎

The processing of RNA transcripts from mammalian genes occurs in proximity to their transcription. Here, we describe a phenomenon affecting thousands of genes that we call exon-mediated activation of transcription starts (EMATS), in which the splicing of internal exons impacts promoter choice and the expression level of the gene. We observed that evolutionary gain of internal exons is associated with gain of new transcription start sites (TSSs) nearby and increased gene expression. Inhibiting exon splicing reduced transcription from nearby promoters, and creation of new spliced exons activated transcription from cryptic promoters. The strongest effects occurred for weak promoters located proximal and upstream of efficiently spliced exons. Together, our findings support a model in which splicing recruits transcription machinery locally to influence TSS choice and identify exon gain, loss, and regulatory change as major contributors to the evolution of alternative promoters and gene expression in mammals.


ESCRT-III-dependent membrane repair blocks ferroptosis.

  • Enyong Dai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Ferroptosis is a form of regulated cell death that is triggered by iron accumulation and lipid peroxidation. Although plasma membrane injuries represent an important event in cell death, the impact of membrane repair mechanisms on ferroptosis remains unidentified. Here, we provide the first evidence that membrane repair dependent on endosomal sorting complexes required for transport (ESCRT)-III negatively regulates ferroptotic cancer cell death. The accumulation of ESCRT-III subunits (e.g., CHMP5 and CHMP6) in the plasma membrane are increased by classical ferroptosis activators (e.g., erastin and RSL3), which relies on endoplasmic reticulum stress and calcium influx. Importantly, the knockdown of CHMP5 or CHMP6 by RNAi sensitizes human cancer cells (e.g., PANC1 and HepG2) to lipid peroxidation-mediated ferroptosis in vitro and in vivo. These findings suggest that ESCRT-III confers resistance to ferroptotic cell death, allowing cell survival under stress conditions.


Widespread occurrence of hybrid internal-terminal exons in human transcriptomes.

  • Ana Fiszbein‎ et al.
  • Science advances‎
  • 2022‎

Messenger RNA isoform differences are predominantly driven by alternative first, internal, and last exons. Despite the importance of classifying exons to understand isoform structure, few tools examine isoform-specific exon usage. We recently observed that alternative transcription start sites often arise near internal exons, often creating “hybrid” first/internal exons. To systematically detect hybrid exons, we built the hybrid-internal-terminal (HIT) pipeline to classify exons depending on their isoform-specific usage. On the basis of splice junction reads in RNA sequencing data and probabilistic modeling, the HIT index identified thousands of previously misclassified hybrid first-internal and internal-last exons. Hybrid exons are enriched in long genes and genes involved in RNA splicing and have longer flanking introns and strong splice sites. Their usage varies considerably across human tissues. By developing the first method to classify exons according to isoform contexts, our findings document the occurrence of hybrid exons, a common quirk of the human transcriptome.


Association of immunity markers with the risk of incident frailty: the Rugao longitudinal aging study.

  • Hui Zhang‎ et al.
  • Immunity & ageing : I & A‎
  • 2022‎

The neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) are readily available circulatory immunity markers that are associated with components of frailty. However, few studies have investigated the relationship between these immunity markers and frailty, and it remains unknown whether they are predictive of incident frailty in older adults in general. Hence, we aimed to examine the association of these immunity markers with the risk of incident frailty.


Population Pharmacokinetic and Concentration-QTc Analysis of Delamanid in Pediatric Participants with Multidrug-Resistant Tuberculosis.

  • Tomohiro Sasaki‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2022‎

A population pharmacokinetic analysis of delamanid and its major metabolite DM-6705 was conducted to characterize the pharmacokinetics of delamanid and DM-6705 in pediatric participants with multidrug-resistant tuberculosis (MDR-TB). Data from participants between the ages of 0.67 and 17 years, enrolled in 2 clinical trials, were utilized for the analysis. The final data set contained 634 delamanid and 706 DM-6705 valid plasma concentrations from 37 children. A transit model with three compartments best described the absorption of delamanid. Two-compartment models for each component with linear elimination were selected to characterize the dispositions of delamanid and DM-6705, respectively. The covariates included in the model were body weight on the apparent volume of distribution and apparent clearance (for both delamanid and DM-6705); formulation (dispersible versus film-coated tablet) on the mean absorption time; age, formulation, and dose on the bioavailability of delamanid; and age on the fraction of delamanid metabolized to DM-6705. Based on the simulations, doses for participants within different age/weight groups that result in delamanid exposure comparable to that in adults following the approved adult dose were calculated. By concentration-QTc (QTcB [QT corrected by Bazett's formula]) analysis, a significant positive correlation was detected with concentrations of DM-6705. However, the model-predicted upper bounds of the 90% confidence intervals of ΔQTc values were <10 ms at the simulated maximum concentration (Cmax) of DM-6705 following the administration of the maximum doses simulated. This suggests that the effect on the QT interval following the proposed dosing is unlikely to be clinically meaningful in children with MDR-TB who receive delamanid.


Isorhapontigenin Modulates SOX9/TOLLIP Expression to Attenuate Cell Apoptosis and Oxidative Stress in Paraquat-Induced Acute Kidney Injury.

  • Qiang Zheng‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.


RBP Image Database: A resource for the systematic characterization of the subcellular distribution properties of human RNA binding proteins.

  • Louis Philip Benoit Bouvrette‎ et al.
  • Nucleic acids research‎
  • 2023‎

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Safety and Efficacy of Paxlovid Against Omicron Variants of Coronavirus Disease 2019 in Elderly Patients.

  • Chengzhao Weng‎ et al.
  • Infectious diseases and therapy‎
  • 2023‎

Elderly patients are the most affected and vulnerable to COVID-19 and effective therapeutic interventions are urgently required. We clarified the safety and efficacy of Paxlovid in the treatment of elderly patients with coronavirus disease 2019 (COVID-19).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: