Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

Scientific reports | 2018

The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with PFDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (PFDR = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (PFDR = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, PFDR = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.

Pubmed ID: 29497127 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GE Healthcare (tool)

RRID:SCR_000004

A commercial antibody supplier and provider of various services.

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

R Project for Statistical Computing (tool)

RRID:SCR_001905

Software environment and programming language for statistical computing and graphics. R is integrated suite of software facilities for data manipulation, calculation and graphical display. Can be extended via packages. Some packages are supplied with the R distribution and more are available through CRAN family.It compiles and runs on wide variety of UNIX platforms, Windows and MacOS.

View all literature mentions

Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

SNPnexus (tool)

RRID:SCR_005192

A web server for functional annotation of novel and publicly known genetic variants that was developed to assess the potential significance of known and novel SNPs on the major transcriptome, proteome, regulatory and structural variation models in order to identify the phenotypically important variants. A broader range of variations have been incorporated such as insertions / deletions, block substitutions, IUPAC codes submission and region-based analysis, expanding the query size limit, and most importantly including additional categories for the assessment of functional impact. SNPnexus provides a comprehensive set of annotations for genomic variation data by characterizing related functional consequences at the transcriptome/proteome levels of seven major annotation systems with in-depth analysis of potential deleterious effects, inferring physical and cytogenetic mapping, reporting information on HapMap genotype/allele data, finding overlaps with potential regulatory elements, structural variations and conserved elements, and retrieving links with previously reported genetic disease studies.

View all literature mentions

International HapMap Project (tool)

RRID:SCR_002846

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

View all literature mentions

BioCarta Pathways (tool)

RRID:SCR_006917

BioCarta Pathways allows users to observe how genes interact in dynamic graphical models. Online maps available within this resource depict molecular relationships from areas of active research. In an open source approach, this community-fed forum constantly integrates emerging proteomic information from the scientific community. It also catalogs and summarizes important resources providing information for over 120,000 genes from multiple species. Find both classical pathways as well as current suggestions for new pathways.

View all literature mentions