2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 66 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_001475

    This resource has 1+ mentions.

http://type1diabetes.jax.org/

International repository for importation, curation, genotypic and phenotypic validation, cryopreservation, and distribution of mouse stocks of value to the type 1 diabetes scientific community holding over 250 genetically modified or congenic mouse stocks that are being used to dissect genetic and biologic features of T1D. They provide extensive genotypic and phenotypic quality control and genetic stabilization for these strains, as well as incidence studies when available. An added value of T1DR stocks is their ability to propel advances in related areas of science, including research in non-T1D autoimmunity and infectious diseases. The staff provides information and technical assistance regarding selection and use of existing T1DR models, and will provide limited support for development of new models considered to be of high-value for the T1D community. The resource includes strains generated at the Jackson Laboratory as well as strains donated by external scientists. Investigators are highly encouraged to donate a strain to ensure its preservation and availability to other researchers.

Proper citation: Type 1 Diabetes Resource (RRID:SCR_001475) Copy   


https://www.niddk.nih.gov/

Center with mission to conduct and support medical research and research training and to disseminate science-based information on diabetes and other endocrine and metabolic diseases. The NIDDK supports a wide range of medical research through grants to universities and other medical research institutions across the country.

Proper citation: NIDDK - National Institute of Diabetes and Digestive and Kidney Diseases (RRID:SCR_012895) Copy   


  • RRID:SCR_010497

http://www.alkermes.com/

A biopharmaceutical company that focuses on central nervous system (CNS) diseases. The company is the result of a merger between Alkermes, Inc. and Elan Drug Technologies (EDT), the former drug formulation and manufacturing division of Elan Corporation, plc. The company is headquartered in Dublin, and has an R&D center in Waltham, Massachusetts and manufacturing facilities in Athlone, Ireland; Gainesville, Georgia; and Wilmington, Ohio. Alkermes has more than 20 commercial drug products and candidates that address serious and chronic diseases such as addiction, schizophrenia, diabetes and depression. Among these, five products are primary to the company: risperidone Long-Acting Injection (Risperdal Consta) for schizophrenia and bipolar 1 disorder, paliperidone palmitate (Invega Sustenna in the U.S., Xeplion in Europe) for schizophrenia, 4-aminopyridine (Ampyra in the U.S., Fampyra in Europe) to improve walking in patients with multiple sclerosis, naltrexone for extended-release injectable suspension (Vivitrol) for alcohol and opioid dependence, and exenatide extended-release for injectable suspension (Bydureon) for the treatment of type 2 diabetes. Bydureon is a once-weekly, long-acting form of the drug exenatide (Byetta) and was developed through a partnership between Amylin, Alkermes and Eli Lilly. It is approved in Europe and the U.S. (Wikipedia)

Proper citation: Alkermes (RRID:SCR_010497) Copy   


http://www.cdc.gov/labstandards/diabetes_dasp.html

Program that develops materials and methods to improve measurements of autoantibodies that are predictive of type 1 diabetes. These are the most sensitive and meaningful measures for predicting this disease. Historically, autoantibody measures have been variable among laboratories; therefore, this program, in collaboration with the Immunology of Diabetes Society, was established. The goals of DASP are to improve laboratory methods, evaluate laboratory performance, support the development of sensitive and specific measurement technologies, and develop reference methods. Currently, 48 key laboratories from 19 countries participate in DASP.

Proper citation: Diabetes Autoantibody Standardization Program (RRID:SCR_006929) Copy   


http://www.jaeb.org/

Freestanding, nonprofit coordinating center for multi-center clinical trials and epidemiologic research that focus on projects involving eye disorders or type 1 diabetes.

Proper citation: Jaeb Center for Health Research (RRID:SCR_001513) Copy   


  • RRID:SCR_001550

    This resource has 1+ mentions.

http://www.trigr.org

International, randomized, double-blinded trial to determine whether weaning to a casein hydrolysate formula during the first 6-8 months of life in place of cow milk based formula reduces the incidence of autoimmunity and type 1 diabetes in genetically susceptible newborn infants. 2160 eligible infants were randomized to test or control formulas when mothers decide to wean from exclusive breastfeeding. The participants will be monitored up to the age of 10 years for the appearance of diabetes-predictive autoantibodies and clinical type 1 diabetes. The TRIGR trial will determine whether delayed exposure to intact food proteins will reduce the chances of developing type 1 diabetes later in life. All babies in the study received the recommendation to breastfeed for at least the first six months of life. If a mother was unable to exclusively breastfeed before the baby was 8 months of age, her child was randomly assigned to one of two groups. One group of these babies received a trial formula based on extensively hydrolyzed protein; the other group received another trial formula containing a smaller amount of hydrolyzed protein. In the hydrolyzed formula, the big protein molecules have been split into very small fragments to provide a source of nutritional amino acids, but the fragments are likely too small to stimulate the immune system. The TRIGR trial will also be able to analyze whether exclusive breastfeeding per se can reduce the risk of the children to develop type 1 diabetes.

Proper citation: TRIGR (RRID:SCR_001550) Copy   


https://www.wtccc.org.uk/

Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.

Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy   


http://www2.niddk.nih.gov/Research/Resources/ObesityResources.htm

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 23, 2017. This website contains resources for obesity researchers including: Obesity Databases, Registries and Information; Obesity Multicenter Clinical Research; Obesity Basic Research Networks; Obesity Reagents; Obesity Services; Obesity Standardization Programs; Obesity Tissues, Cells, Animals; Obesity Useful Tools.

Proper citation: NIDDK- National Institute of Diabetes and Digestive and Kidney Diseases Obesity Resources (RRID:SCR_003074) Copy   


  • RRID:SCR_018567

    This resource has 1+ mentions.

https://pancreatlas.org/

Collection of human pancreas data and images. Platform to share data from human pancreas samples. Houses reference datasets from human pancreas samples, achieved through generosity of organ donors and their families.

Proper citation: Pancreatlas (RRID:SCR_018567) Copy   


http://www2.bsc.gwu.edu/bsc/oneproj.php?pkey=28

Collect, store, and distribute genetic samples from cases and controls of type 1 diabetes and diabetic nephropathy for investigator-driven research into the genetic basis of diabetic nephropathy. As the risk of kidney complications in type 1 diabetes appears to have a considerable genetic component, this study assembled a large data resource for researchers attempting to identify causative genetic variants. The types of data collected allowed traditional case-control testing, a rapid and often powerful approach, and family-based analysis, a robust approach that is not influenced by population substructure. To identify genes that are involved in diabetic nephropathy, a large number of individuals with type 1 diabetes were screened to identify two subsets, one with clear-cut kidney disease and another with normal renal status despite long-term diabetes. Those who met additional entry criteria and consented to participate were enrolled. When possible, both parents also were enrolled to form family trios. As of November 2005, GoKinD included 3075 participants who comprise 671 case singletons, 623 control singletons, 272 case trios, and 323 control trios. Interested investigators may request the DNA collection and corresponding clinical data for GoKinD participants. Participating scientists will have access to three data sets, each with distinct advantages. The set of 1294 singletons has adequate power to detect a wide range of genetic effects, even those of modest size. The set of case trios, which has adequate power to detect effects of moderate size, is not susceptible to false-positive results because of population substructure. The set of control trios is critical for excluding certain false-positive results that can occur in case trios and may be particularly useful for testing gene-environment interactions. Integration of the evidence from these three components into a single, unified analysis presents a challenge. This overview of the GoKinD study examines in detail the power of each study component and discusses analytic challenges that investigators will face in using this resource. Half of the samples were collected at the Joslin Diabetes Center and the other half were collected from around the country by researchers at The George Washington University. DNA samples were processed by scientists at the University of Minnesota and stored at the U.S. Centers for Disease Control and Prevention. Stored samples were available to the research community through a mechanism that has been determined by JDF. Clinical characteristics of patients, which are stored in a central database, are also made available to participating scientists. A similar collection is being carried out in the United Kingdom. This data resource allows researchers to test hypotheses that might explain why diabetic kidney disease clusters in families. This resource also is suitable for studying other complications and type 1 diabetes itself. For example, a total of 1,110 diabetes case trios was available at the end of three years.)

Proper citation: Genetics of Kidneys in Diabetes (RRID:SCR_000133) Copy   


https://bruskolab.diabetes.ufl.edu/research/handel-i/

HANDEL-1 program to better understand normal human immune development by acquiring stromal and mucosal tissues from infant and pediatric organ donors and to create novel and essential dataset informing immune system development in collaborative research project that leverages shared access to various tissues in conjunction with existing HANDEL-P program that seeks to understand development of pancreas and islet microenvironment in early life.

Proper citation: Human Atlas of Neonatal Development and Early Life Immunity (RRID:SCR_021947) Copy   


http://www.citisletstudy.org/

Network of clinical centers and a data coordinating center established to conduct studies of islet transplantation in patients with type 1 diabetes.

Proper citation: Clinical Islet Transplantation Consortium (CITC) (RRID:SCR_014385) Copy   


http://www.isletstudy.org/

Network of centers to conduct studies of islet transplantation in patients with type 1 diabetes to improve the safety and long-term success of methods for transplanting islets. It is the aim of this trial to improve methods of isolating islets, to improve techniques for the administering those transplanted islets; and to develop approaches to minimize the toxic effects of immunosuppressive drugs required for transplantation.

Proper citation: Clinical Islet Transplantation Study (RRID:SCR_001515) Copy   


http://diabetes.niddk.nih.gov/dm/pubs/control/index.aspx

Clinical study that showed that keeping blood glucose levels as close to normal as possible slows the onset and progression of eye, kidney, and nerve diseases caused by diabetes. EDIC is a follow-up study of people who participated in DCCT. The DCCT involved 1,441 volunteers, ages 13 to 39, with type 1 diabetes and 29 medical centers in the United States and Canada. Volunteers had to have had diabetes for at least 1 year but no longer than 15 years. They also were required to have no, or only early signs of, diabetic eye disease. The study compared the effects of standard control of blood glucose versus intensive control on the complications of diabetes. Intensive control meant keeping hemoglobin A1C levels as close as possible to the normal value of 6 percent or less. The A1C blood test reflects a person''''s average blood glucose over the last 2 to 3 months. Volunteers were randomly assigned to each treatment group. DCCT Study Findings * Intensive blood glucose control reduces risk of ** eye disease: 76% reduced risk ** kidney disease: 50% reduced risk ** nerve disease: 60% reduced risk When the DCCT ended, researchers continued to study more than 90 percent of participants. The follow-up study, called Epidemiology of Diabetes Interventions and Complications (EDIC), is assessing the incidence and predictors of cardiovascular disease events such as heart attack, stroke, or needed heart surgery, as well as diabetic complications related to the eye, kidney, and nerves. The EDIC study is also examining the impact of intensive control versus standard control on quality of life. Another objective is to look at the cost-effectiveness of intensive control. EDIC Study Findings * Intensive blood glucose control reduces risk of ** any cardiovascular disease event: 42% reduced risk ** nonfatal heart attack, stroke, or death from cardiovascular causes: 57% reduced risk

Proper citation: Diabetes Control and Complications Trial (RRID:SCR_006805) Copy   


  • RRID:SCR_017195

    This resource has 1+ mentions.

https://t1dexchange.org/research/biobank/

Collection of biological samples linked to participant medical data from individuals living with type 1 diabetes. Unifies samples and data from eight different clinical studies related to type 1 diabetes.

Proper citation: T1D Exchange Biobank (RRID:SCR_017195) Copy   


https://www.itntrialshare.org/

Immune tolerance data management and visualization portal for studies sponsored by Immune Tolerance Network (ITN) and collaborating investigators. Data from published studies are accessible to any user; data from current in-progress studies are accessible to study investigators and collaborators. Includes links to published Figures, tools for visualization and analysis of data, and ability to query study data by subject, group, or any other study parameter.

Proper citation: Immune Tolerance Network TrialShare (RRID:SCR_013699) Copy   


  • RRID:SCR_014534

    This resource has 1+ mentions.

https://www.qut.edu.au/research/research-projects/landmark-biobanks

A repository of human tissue samples collected during the LANDMark study (Longitudinal Assessment of Neuropathy in Diabetes using novel ophthalmic markers). The LANDMark Biobank longitudinal dataset contains blood and tissue (skin) samples and matching detailed phenotypic data of three microvascluar complications of type 1 diabetes: neuropathy, nephropathy and retinopathy.

Proper citation: LANDMark BioBanks (RRID:SCR_014534) Copy   


  • RRID:SCR_018565

    This resource has 10+ mentions.

http://nanotomy.org/

Large scale electron microscopy datasets. Large scale electron microscopy database for Human Type 1 Diabetes.

Proper citation: Nanotomy (RRID:SCR_018565) Copy   


  • RRID:SCR_020250

https://thesugarscience.org

Interactive digital platform helping scientists who study type 1 diabetes connect, collaborate, and gain funding for their best ideas. All volunteer team has received much positive support from the global population of scientists studying type 1 diabetes, as well as from Beyond Type 1, JDRF, and IPITA. Provides curated conversations, events and technology to scientific T1D focused audience. Non profit entity funded by donations and sponsorships with industry and academic partners to provide unique collaborative benefits and programs to researchers in the T1D academic research community.

Proper citation: thesugarscience (RRID:SCR_020250) Copy   


https://hugeamp.org

Portal enables browsing, searching, and analysis of human genetic information linked to common metabolic diseases and traits, while protecting integrity and confidentiality of underlying data. Aggregates and analyzes genetic association results, epigenomic annotations, and results of computational prediction methods to provide data, visualizations, and tools in open access portal.

Proper citation: Common Metabolic Diseases Knowledge Portal (RRID:SCR_020937) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X