Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 out of 18 results
Snippet view Table view Download
Click the to add this resource to a Collection
  • RRID:SCR_003612

    This resource has 100+ mentions.

http://fcon_1000.projects.nitrc.org/indi/abide/

Resting state functional magnetic resonance imaging (R-fMRI) datasets from 539 individuals with autism spectrum disorder (ASD) and 573 typical controls. This initiative involved 16 international sites, sharing 20 samples yielding 1112 datasets composed of both MRI data and an extensive array of phenotypic information common across nearly all sites. This effort is expected to facilitate discovery science and comparisons across samples. All datasets are anonymous, with no protected health information included.

Proper citation: ABIDE (RRID:SCR_003612) Copy   


  • RRID:SCR_008914

    This resource has 10+ mentions.

http://mialab.mrn.org/data/index.html

An MRI data set that demonstrates the utility of a mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described, provide a useful baseline for future investigations of brain networks in health and disease.

Proper citation: MIALAB - Resting State Data (RRID:SCR_008914) Copy   


http://www.nimh.nih.gov/about/advisory-boards-and-groups/namhc/reports/mri-research-safety-ethics.pdf

NIMH recognizes the need to consider safety and ethical issues related to both the administration of MR (magnetic resonance) facilities and the use of these facilities for research. This document summarizes the points to consider discussed by the National Advisory Mental Health Council (NAMHC) Workgroup. Examples of safe and ethical practices are discussed in relation to several issues. These examples are intended to be illustrative and should not be interpreted as an exhaustive or exclusive list. This document was presented to the full NIMH Council on September 15, 2006 and approved unanimously. By making the points to consider document available publicly, NIMH intends to provide a resource for researchers and institutions that use MRI in research. The agenda was organized into six topics, which provide the organization for the points to consider that follow: A. MRI screening B. Training, operating, and emergency procedures C. Physical facilities D. Scanning/participant health variables E. Context- Specific Considerations: University vs. medical settings F. Additional data needs and updating The NIMH believes that investigators, institutions and facilities can use this document as a resource for the development, administration, evaluation, and use of MRI research facilities.

Proper citation: MRI Research Safety and Ethics (RRID:SCR_005642) Copy   


  • RRID:SCR_002438

    This resource has 100+ mentions.

http://mindboggle.info

Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350

Proper citation: Mindboggle (RRID:SCR_002438) Copy   


  • RRID:SCR_007278

    This resource has 10+ mentions.

http://www.fmridc.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 25, 2013 Public curated repository of peer reviewed fMRI studies and their underlying data. This Web-accessible database has data mining capabilities and the means to deliver requested data to the user (via Web, CD, or digital tape). Datasets available: 107 NOTE: The fMRIDC is down temporarily while it moves to a new home at UCLA. Check back again in late Jan 2013! The goal of the Center is to help speed the progress and the understanding of cognitive processes and the neural substrates that underlie them by: * Providing a publicly accessible repository of peer-reviewed fMRI studies. * Providing all data necessary to interpret, analyze, and replicate these fMRI studies. * Provide training for both the academic and professional communities. The Center will accept data from those researchers who are publishing fMRI imaging articles in peer-reviewed journals. The goal is to serve the entire fMRI community.

Proper citation: fMRI Data Center (RRID:SCR_007278) Copy   


http://www.nimh.nih.gov/educational-resources/brains-inner-workings/the-brains-inner-workings-activities-for-grades-9-through-12.shtml

This comprehensive free collection of multimedia resources and inquiry-based activities tied to the National Science Education Standards help teachers and students learn about the structure, function and cognitive aspects of the human brain. The packet includes a teacher's manual, student manual, DVD of videos, and a CDROM of accompanying materials.

Proper citation: Brain's Inner Workings: Activities for Grades 9 through 12 (RRID:SCR_008842) Copy   


  • RRID:SCR_002759

    This resource has 10+ mentions.

http://sumsdb.wustl.edu/sums/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures

Proper citation: SumsDB (RRID:SCR_002759) Copy   


  • RRID:SCR_002420

http://cobre.mrn.org/megsim/

Realistic simulated MEG datasets ranging from basic sensory to oscillatory sets that mimic functional connectivity; as well as basic visual, auditory, and somatosensory empirical sets. The simulated sets were created for the purpose of testing analysis algorithms across the different MEG systems when the truth is known. MEG baseline recordings were obtained from 5 healthy participants, using three MEG systems: VSM/CTF Omega, Elekta Neuromag Vectorview, 4-D Magnes 3600. Simulated signals were embedded within the CTF and Neuromag 306 baseline recordings (4-D to be added). Participant MRIs are available. Averaged simulation files are available as netcdf files. Neuromag 306 averaged simulations are also available in fif format. Also available: single trials of data where the simulated signal is jittered about a mean value, continuous fif files where the simulated signal is marked by a trigger, and simulations with oscillations added to mimic functional connectivity.

Proper citation: MEGSIM (RRID:SCR_002420) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


  • RRID:SCR_013664

    This resource has 1+ mentions.

http://nunda.northwestern.edu/nunda/app

A resource for managing study data collected by the Northwestern University neuroimaging community. It includes a secure database, automated pipelines for processing managed data, and tools for exploring and accessing the data. Access to data in the NUNDA is restricted to users authorized by the specific study's investigators. The NUNDA is hosted by the Neuroimaging & Applied Computational Anatomy Lab, and it is modeled after the Washington University's Central Neuroimaging Data Archive (CNDA). The NUNDA is powered by XNAT, an open source software package for managing neuroimaging and related data.

Proper citation: NUNDA (RRID:SCR_013664) Copy   


http://www.pediatricmri.nih.gov/

Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.

Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy   


http://tela.biostr.washington.edu/cgi-bin/repos/bmap_repo/main-menu.pl

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. An experiment management system for researchers studying language organization in the brain. Data from thirteen patients are available as a public demo. Language Map EMS

Proper citation: Language Map Experiment Management System (RRID:SCR_004562) Copy   


  • RRID:SCR_006623

    This resource has 50+ mentions.

http://users.loni.ucla.edu/~shattuck/brainsuite/

Suite of image analysis tools designed to process magnetic resonance images (MRI) of the human head. BrainSuite provides an automatic sequence to extract genus-zero cortical surface mesh models from the MRI. It also provides a set of viewing tools for exploring image and surface data. The latest release includes graphical user interface and command line versions of the tools. BrainSuite was specifically designed to guide its users through the process of cortical surface extraction. NITRC has written the software to require minimal user interaction and with the goal of completing the entire process of extracting a topologically spherical cortical surface from a raw MR volume within several minutes on a modern workstation. The individual components of BrainSuite may also be used for soft tissue, skull and scalp segmentation and for surface analysis and visualization. BrainSuite was written in Microsoft Visual C using the Microsoft Foundation Classes for its graphical user interface and the OpenGL library for rendering. BrainSuite runs under the Windows 2000 and Windows XP Professional operating systems. BrainSuite features include: * Sophisticated visualization tools, such as MRI visualization in 3 orthogonal views (either separately or in 3D view), and overlayed surface visualization of cortex, skull, and scalp * Cortical surface extraction, using a multi-stage user friendly approach. * Tools including brain surface extraction, bias field correction, voxel classification, cerebellum removal, and surface generation * Topological correction of cortical surfaces, which uses a graph-based approach to remove topological defects (handles and holes) and ensure a tessellation with spherical topology * Parameterization of generated cortical surfaces, minimizing a harmonic energy functional in the p-norm * Skull and scalp surface extraction

Proper citation: BrainSuite (RRID:SCR_006623) Copy   


  • RRID:SCR_004817

    This resource has 100+ mentions.

http://trackvis.org/

TrackVis is software tool that can visualize and analyze fiber track data from diffusion MR imaging (DTI/DSI/HARDI/Q-Ball) tractography. It does NOT perform actual fiber tracking. Diffusion Toolkit is a set of tools that reconstruct diffusion imaging data and generate fiber track data for TrackVis to visualize. Because these two sets of tools were developed and maintained separately and each has distinguished funtionalities, they decided to distribute them as two separate programs for the ease of maintenance and upgrade. You do need both of them to perform complete diffusion data processing and analysis. Features of TrackVis include: * Cross-platform. Works on Windows, Mac OS X and Linux with native look and feel. * A variety of track filters (track selecting methods) allowing users to explore and locate specific bundles with ease. * Multiple rendering modes with customizable scalar-driven color codes. * Real-time parameter adjustment and 3D render. * Open format of the track data file allowing users to integrate customized scalar data into the track file and visualize and analyze it. Save and restore scenes in XML style scene file. * Statistical scalar analysis of tracks and ROIs. * Synchronized real-time multiple dataset analysis and display allowing time-point and/or subject comparison. Synchronized analysis and display on same dataset can also be performed in real-time remotely over the network. * Upfront in-line parameter adjustment in real-time. No tedious pop-up dialogs. TrackVis works with Track File created by Diffusion Toolkit. Diffusion Toolkit processes raw DICOM, Nifti format and ANALYZE images. TrackVis and Diffusion Toolkit are cross-platform software. They can run on Windows XP, Mac OS X as well as Linux.

Proper citation: TrackVis (RRID:SCR_004817) Copy   


http://www.sri.com/biosciences/nimh/

The purpose of the NIMH Toxicological Evaluation of Novel Ligands Program is to accelerate the discovery, development, and application of novel ligands for PET, SPECT, and MRI imaging in humans by providing toxicology and safety assessment of promising, target-selective compounds. The program will also provide limited assessment of novel psychoactive agents for clinical research and as potential therapeutics. Toxicology and safety data generated by the program will be used to support an Investigational New Drug (IND) application to the Food and Drug Administration (FDA), or for Radioactive Drug Research Committee (RDRC) evaluation of a compound for human studies. The contract will evaluate toxicity and safety of compounds submitted for testing which may include, but are not limited to, novel chemical entities, structural analogs of compounds with an IND, or analogs of FDA-approved drugs. The services available under this program fall under four general phases: (1) analytical, (2) pharmacokinetics, (3) preliminary safety, and (4) IND-directed toxicity including safety pharmacology. What is available A broad range of tasks are available for assessing the safety and/or pharmacokinetics of each ligand. Specific capabilities available to investigators include: * Validation of the analytical methods for quantitating drug concentrations in dosing solutions, biological fluids, and tissues, as required. Determination of plasma drug levels in animals administered the agent under study, and calculation of pharmacokinetic parameters derived from these data. * Determination of bioavailability of the drug after different routes of administration, including oral, intravenous (i.v.), subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.), as needed. Calculation of the pharmacokinetic parameters from the derived data. * In vitro evaluation of hepatotoxicity in human and animal liver cells. * Preclinical acute toxicity evaluations on lead compounds, evaluating clinical observations, body weights, clinical pathology, histopathology, and plasma drug levels in rodents and non-rodent species. Other toxicology endpoints may be selected if needed. * Subacute and subchronic toxicity evaluations in rodents and large animal species, evaluating clinical observations, body weights, clinical pathology, and histopathology. * Genotoxicity assessments using a battery of appropriate assays. Since these preclinical studies are needed to demonstrate to the FDA that a candidate medication or imaging agent is understood well enough for designing appropriate clinical treatment regimens, most of the work to be conducted to achieve these objectives must be performed and the resulting data analyzed and reported in strict compliance with the FDA''s GLP regulations for nonclinical laboratory studies (21 CFR 58). These data must be obtained by carefully planned and skillfully executed methods that are specific, accurate, and precise. The applicable portions of the accumulated safety data will be included in documents submitted to the FDA in support of regulatory applications. Who is eligible Academic investigators involved in basic or clinical research relevant to mental health. Research areas are described on the NIMH website.

Proper citation: NIMH Toxicological Screens of Novel Ligands (RRID:SCR_005631) Copy   


http://nif.nimh.nih.gov/

Neurophysiology imaging core facility that provides anatomical and functional MRI scanning for researchers in the National Institute of Mental Health (NIMH), the National Eye Institute (NEI), and the National Institute for Neurological Disorders and Stroke (NINDS). The shared intramural resource centers on a cutting-edge 4.7T vertical bore scanner dedicated to imaging of nonhuman primates.

Proper citation: Neurophysiology Imaging Facility (RRID:SCR_004080) Copy   


Ratings or validation data are available for this resource

http://nifti.nimh.nih.gov/

Coordinated and targeted service, training, and research to speed the development and enhance the utility of informatics tools related to neuroimaging. The initial focus will be on tools that are used in fMRI. If NIfTI proves useful in addressing informatics issues in the fMRI research community, it may be expanded to address similar issues in other areas of neuroimaging. Objectives of NIfTI * Enhancement of existing informatics tools used widely in neuroimaging research * Dissemination of neuroimaging informatics tools and information about them * Community-based approaches to solving common problems, such as lack of interoperability of tools and data * Unique training activities and research career development opportunities to those in the tool-user and tool-developer communities * Research and development of the next generation of neuroimaging informatics tools

Proper citation: Neuroimaging Informatics Technology Initiative (RRID:SCR_003141) Copy   


  • RRID:SCR_005923

http://ki.se/meb/star

Large, ongoing, multifactorial study based on nation-wide ascertainment of patients with schizophrenia and bipolar disorder through the Swedish Twin Registry to include both neuroimaging data, neurocognitive function, molecular genetic data and early adverse environmental factors in the same model in a genetic sensitive design. Swedish schizophrenia research will benefit from this large study database of in total 240 affected and healthy twin pairs collected over a 5 year period. The specific aims are: * To elucidate neural endophenotypes for schizophrenia and bipolar disorder and to clarify the extent of overlap in these features between the two syndromes. * To investigate candidate genes and genomic regions for linkage and association with neural endophenotypes for schizophrenia and bipolar disease. * To determine the contributions of adverse prenatal and perinatal conditions to neural changes associated with schizophrenia and bipolar disease. Types of samples * EDTA whole blood * DNA * RNA Number of sample donors: 251 (June 2010)

Proper citation: KI Biobank - STAR (RRID:SCR_005923) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within FDI Lab - SciCrunch.org that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X