Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

De novo transcriptome assembly and gene annotation for the toxic dinoflagellate Dinophysis.

Scientific data | 2023

Species within the dinoflagellate genus Dinophysis can produce okadiac acid and dinophysistoxins leading to diarrhetic shellfish poisoning. Since the first report of D. ovum from the Gulf of Mexico in 2008, reports of other Dinophysis species across US have increased. Members of the D. cf. acuminata complex (D. acuminata, D. acuta, D. ovum, D. sacculus) are difficult to differentiate due to their morphological similarities. Dinophysis feeds on and steals the chloroplasts from the ciliate, Mesodinium rubrum, which in turn has fed on and captured the chloroplasts of its prey, the cryptophyte Teleaulax amphioxeia. The objective of this study was to generate de novo transcriptomes for new isolates of these mixotrophic organisms. The transcriptomes obtained will serve as a reference for future experiments to assess the effect of different abiotic and biotic conditions and will also provide a useful resource for screening potential marker genes to differentiate among the closely related species within the D. cf. acuminata-complex. The complete comprehensive detailed workflow and links to obtain the transcriptome data are provided.

Pubmed ID: 37268695 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: United States Department of Commerce | NOAA | Center for Sponsored Coastal Ocean Research (NOAA Center for Sponsored Coastal Ocean Research),
    Id: NA19NOS4780182-722372-712683
  • Agency: United States Department of Commerce | NOAA | Center for Sponsored Coastal Ocean Research (NOAA Center for Sponsored Coastal Ocean Research),
    Id: NA19NOS4780182-722372-712683

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PRINTS (tool)

RRID:SCR_003412

Compendium of protein fingerprints. Diagnostic fingerprint database.

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

PANTHER (tool)

RRID:SCR_004869

System that classifies genes by their functions, using published scientific experimental evidence and evolutionary relationships to predict function even in absence of direct experimental evidence. Orthologs view is curated orthology relationships between genes for human, mouse, rat, fish, worm, and fly.

View all literature mentions

InterProScan (tool)

RRID:SCR_005829

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

View all literature mentions

Gene3D (tool)

RRID:SCR_007672

A large database of CATH protein domain assignments for ENSEMBL genomes and Uniprot sequences. Gene3D is a resource of form studying proteins and the component domains. Gene3D takes CATH domains from Protein Databank (PDB) structures and assigns them to the millions of protein sequences with no PDB structures using Hidden Markov models. Assigning a CATH superfamily to a region of a protein sequence gives information on the gross 3D structure of that region of the protein. CATH superfamilies have a limited set of functions and so the domain assignment provides some functional insights. Furthermore most proteins have several different domains in a specific order, so looking for proteins with a similar domain organization provides further functional insights. Strict confidence cut-offs are used to ensure the reliability of the domain assignments. Gene3D imports functional information from sources such as UNIPROT, and KEGG. They also import experimental datasets on request to help researchers integrate there data with the corpus of the literature. The website allows users to view descriptions for both single proteins and genes and large protein sets, such as superfamilies or genomes. Subsets can then be selected for detailed investigation or associated functions and interactions can be used to expand explorations to new proteins. The Gene3D web services provide programmatic access to the CATH-Gene3D annotation resources and in-house software tools. These services include Gene3DScan for identifying structural domains within protein sequences, access to pre-calculated annotations for the major sequence databases, and linked functional annotation from UniProt, GO and KEGG.

View all literature mentions

Trinity (tool)

RRID:SCR_013048

Software for the efficient and robust de novo reconstruction of transcriptomes from RNA-seq data.

View all literature mentions

TransDecoder (tool)

RRID:SCR_017647

Software tool to identify candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to genome using Tophat and Cufflinks.Starts from FASTA or GFF file. Can scan and retain open reading frames (ORFs) for homology to known proteins by using BlastP or Pfam search and incorporate results into obtained selection. Predictions can then be visualized by using genome browser such as IGV.

View all literature mentions

ThermoFisher Scientific EVOS M5000 Imaging System (tool)

RRID:SCR_023650

Microsoft system includes integrated digital inverted benchtop microscope for four-color fluorescence, transmitted-light, and color imaging. Provides interchangeable optics with autofocus, single-click multi-channel image acquisition.3.2 Megapixels, monochrome, CMOS camera. Offers software for acquisition, analysis, and automated cell counting.

View all literature mentions