Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server.

RNA (New York, N.Y.) | 2023

Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (make antisense oligomers now), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.

Pubmed ID: 36750372 RIS Download

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mason (tool)

RRID:SCR_002476

Collection of software tools for simulating biological sequences, including simulations of genome fragment sampling, random genomic sequences, methylation levels, and NGS reads.

View all literature mentions

NCBI BioProject (tool)

RRID:SCR_004801

Database of biological data related to a single initiative, originating from a single organization or from a consortium. A BioProject record provides users a single place to find links to the diverse data types generated for that project. It is a searchable collection of complete and incomplete (in-progress) large-scale sequencing, assembly, annotation, and mapping projects for cellular organisms. Submissions are supported by a web-based Submission Portal. The database facilitates organization and classification of project data submitted to NCBI, EBI and DDBJ databases that captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. BioProject records link to corresponding data stored in archival repositories. The BioProject resource is a redesigned, expanded, replacement of the NCBI Genome Project resource. The redesign adds tracking of several data elements including more precise information about a project''''s scope, material, and objectives. Genome Project identifiers are retained in the BioProject as the ID value for a record, and an Accession number has been added. Database content is exchanged with other members of the International Nucleotide Sequence Database Collaboration (INSDC). BioProject is accessible via FTP.

View all literature mentions

SeqMap (tool)

RRID:SCR_005495

A software tool for mapping large amount of oligonucleotide to the genome. It is designed for finding all the places in a genome where an oligonucleotide could potentially come from. SeqMap can efficiently map as many as dozens of millions of short sequences to a genome of several billions of nucleotides. While doing the mapping, several mutations as well as insertions / deletions of the nucleotide bases in the sequences can be tolerated and furthermore detected. Various input and output formats are supported, as well as many command line options for tuning almost every steps in the mapping process. A typical mapping can be done in a few hours on an ordinary PC.

View all literature mentions

Bioconductor (tool)

RRID:SCR_006442

Software repository for R packages related to analysis and comprehension of high throughput genomic data. Uses separate set of commands for installation of packages. Software project based on R programming language that provides tools for analysis and comprehension of high throughput genomic data.

View all literature mentions

BEDTools (tool)

RRID:SCR_006646

A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

View all literature mentions

Biopython (tool)

RRID:SCR_007173

Biopython is a set of freely available tools for biological computation written in Python by an international team of developers. It is a distributed collaborative effort to develop Python libraries and applications which address the needs of current and future work in bioinformatics. The source code is made available under the Biopython License, which is extremely liberal and compatible with almost every license in the world. It works along with the Open Bioinformatics Foundation, who generously host it''s website, bug tracker, and mailing lists. Sponsor: This resource is supported by the Open Bioinformatics Foundation. Keywords: Tool, Software, Python, Biological, Computation, Bioinformatics,

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

edgeR (tool)

RRID:SCR_012802

Bioconductor software package for Empirical analysis of Digital Gene Expression data in R. Used for differential expression analysis of RNA-seq and digital gene expression data with biological replication.

View all literature mentions

ggplot2 (tool)

RRID:SCR_014601

Open source software package for statistical programming language R to create plots based on grammar of graphics. Used for data visualization to break up graphs into semantic components such as scales and layers.

View all literature mentions

ComplexHeatmap (tool)

RRID:SCR_017270

Software package to arrange multiple heatmaps and support various annotation graphics. Used to visualize associations between different sources of data sets and to reveal potential patterns.

View all literature mentions