Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Exploring the evolutionary process of alkannin/shikonin O-acyltransferases by a reliable Lithospermum erythrorhizon genome.

DNA research : an international journal for rapid publication of reports on genes and genomes | 2021

Increasing genome data are coming out. Genome size estimation plays an essential role in guiding genome assembly. Several months ago, other researchers were the first to publish a draft genome of the red gromwell (i.e. Lithospermum erythrorhizon). However, we considered that the genome size they estimated and assembled was incorrect. This study meticulously estimated the L. erythrorhizon genome size to should be ∼708.74 Mb and further provided a reliable genome version (size ≈ 693.34 Mb; contigN50 length ≈ 238.08 Kb) to support our objection. Furthermore, according to our genome, we identified a gene family of the alkannin/shikonin O-acyltransferases (i.e. AAT/SAT) that catalysed enantiomer-specific acylations in the alkannin/shikonin biosynthesis (a characteristic metabolic pathway in L. erythrorhizon's roots) and further explored its evolutionary process. The results indicated that the existing AAT/SAT were not generated from only one round of gene duplication but three rounds; after different rounds of gene duplication, the existing AAT/SAT and their recent ancestors were under positive selection at different amino acid sites. These suggested that a combined power from gene duplication plus positive selection plausibly propelled AAT/SAT's functional differentiation in evolution.

Pubmed ID: 34424327 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MEME Suite - Motif-based sequence analysis tools (tool)

RRID:SCR_001783

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

View all literature mentions

SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

GlimmerHMM (tool)

RRID:SCR_002654

A gene finder based on a Generalized Hidden Markov Model (GHMM). Although the gene finder conforms to the overall mathematical framework of a GHMM, additionally it incorporates splice site models adapted from the GeneSplicer program and a decision tree adapted from GlimmerM. It also utilizes Interpolated Markov Models for the coding and noncoding models . Currently, GlimmerHMM's GHMM structure includes introns of each phase, intergenic regions, and four types of exons (initial, internal, final, and single).

View all literature mentions

Jellyfish (tool)

RRID:SCR_005491

A software tool for fast, memory-efficient counting of k-mers in DNA. A k-mer is a substring of length k, and counting the occurrences of all such substrings is a central step in many analyses of DNA sequence. JELLYFISH can count k-mers quickly by using an efficient encoding of a hash table and by exploiting the compare-and-swap CPU instruction to increase parallelism. Jellyfish is a command-line program that reads FASTA and multi-FASTA files containing DNA sequences. It outputs its k-mer counts in an binary format, which can be translated into a human-readable text format using the jellyfish dump command.

View all literature mentions

Augustus (tool)

RRID:SCR_008417

Software for gene prediction in eukaryotic genomic sequences. Serves as a basis for further steps in the analysis of sequenced and assembled eukaryotic genomes.

View all literature mentions

DIAMOND (tool)

RRID:SCR_009457

Software to: view dicom files and assemble them into 3D volumes. View and convert between Analyze, Nifti, and Interfile. Classify and organize dicoms and 3D volumes using metadata. Search and report on a collection of scans.

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions

Trimmomatic (tool)

RRID:SCR_011848

Software Java pipeline for trimming tasks for Illumina paired end and single ended data. Flexible Trimmer for Illumina Sequence Data. Pair aware preprocessing tool optimized for Illumina next generation sequencing data. Includes several processing steps for read trimming and filtering. Operating systems Unix/Linux, Mac OS, Windows.

View all literature mentions

RepeatMasker (tool)

RRID:SCR_012954

Software tool that screens DNA sequences for interspersed repeats and low complexity DNA sequences. The output of the program is a detailed annotation of the repeats that are present in the query sequence as well as a modified version of the query sequence in which all the annotated repeats have been masked (default: replaced by Ns). Currently over 56% of human genomic sequence is identified and masked by the program. Sequence comparisons in RepeatMasker are performed by one of several popular search engines including nhmmer, cross_match, ABBlast/WUBlast, RMBlast and Decypher. RepeatMasker makes use of curated libraries of repeats and currently supports Dfam ( profile HMM library ) and RepBase ( consensus sequence library ).

View all literature mentions

PASA (tool)

RRID:SCR_014656

Gene structure annotation and analysis tool that uses spliced alignments of expressed transcript sequences to automatically model gene structures. It also incorporates gene structures based on transcript alignments into existing gene structure annotations. It is one component of a larger eukayotic annotation pipeline implemented at the Broad Institute.

View all literature mentions

EVidenceModeler (tool)

RRID:SCR_014659

Software tool for automated eukaryotic gene structure annotation that reports eukaryotic gene structures as weighted consensus of all available evidence. Used to combine ab intio gene predictions and protein and transcript alignments into weighted consensus gene structures. Inputs include genome sequence, gene predictions, and alignment data (in GFF3 format).

View all literature mentions

Pilon (tool)

RRID:SCR_014731

Software tool to automatically improve draft assemblies and find variation among strains, including large event detection. FASTA files of genome along with one or more BAM files of reads aligned as input. Read alignment analysis is used to identify inconsistencies between input genome and evidence in reads, then attempts to make improvements to genome.

View all literature mentions

PAML (tool)

RRID:SCR_014932

Package of programs for phylogenetic analyses of DNA or protein sequences using maximum likelihood. PAML estimates parameters and tests hypotheses to study the evolutionary process from a phylogenetic tree.

View all literature mentions

BUSCO (tool)

RRID:SCR_015008

Software tool to quantitatively measure genome assembly and annotation completeness based on evolutionarily informed expectations of gene content.

View all literature mentions

RepeatModeler (tool)

RRID:SCR_015027

Sequence analysis software that performs repeat family identification and creates models for sequence data. RepeatModeler utilizes RepeatScout and RECON to identify repeat element boundaries and family relationships.

View all literature mentions

NanoFilt (tool)

RRID:SCR_016966

Software tool written in Python to perform its filtering based on mean read quality and GC content and read length. Used for filtering and trimming of long read sequencing data.

View all literature mentions

GenomeScope (tool)

RRID:SCR_017014

Open source software package for fast genome analysis from unassembled short reads. Used to estimate genome heterozygosity, repeat content, and size from sequencing reads using a kmer-based statistical approach.

View all literature mentions

SMARTdenovo (tool)

RRID:SCR_017622

Software tool as de novo assembler for PacBio and Oxford Nanopore data. It produces assembly from all-vs-all raw read alignments without error correction stage. Allows to read overlapping, rescue missing overlaps, identify low-quality regions and chimaera and produce better consensus.

View all literature mentions

TransDecoder (tool)

RRID:SCR_017647

Software tool to identify candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to genome using Tophat and Cufflinks.Starts from FASTA or GFF file. Can scan and retain open reading frames (ORFs) for homology to known proteins by using BlastP or Pfam search and incorporate results into obtained selection. Predictions can then be visualized by using genome browser such as IGV.

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

NextDenovo (tool)

RRID:SCR_025033

Software error correction and accurate assembly tool for noisy long reads. De novo assembler for long reads.

View all literature mentions