Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Flexibility in Red Sea Tridacna maxima-Symbiodiniaceae associations supports environmental niche adaptation.

Ecology and evolution | 2021

Giant clams (Tridacninae) are important members of Indo-Pacific coral reefs and among the few bivalve groups that live in symbiosis with unicellular algae (Symbiodiniaceae). Despite the importance of these endosymbiotic dinoflagellates for clam ecology, the diversity and specificity of these associations remain relatively poorly studied, especially in the Red Sea. Here, we used the internal transcribed spacer 2 (ITS2) rDNA gene region to investigate Symbiodiniaceae communities associated with Red Sea Tridacna maxima clams. We sampled five sites spanning 1,300 km (10° of latitude, from the Gulf of Aqaba, 29°N, to the Farasan Banks, 18°N) along the Red Sea's North-South environmental gradient. We detected a diverse and structured assembly of host-associated algae with communities demonstrating region and site-specificity. Specimens from the Gulf of Aqaba harbored three genera of Symbiodiniaceae, Cladocopium, Durusdinium, and Symbiodinium, while at all other sites clams associated exclusively with algae from the Symbiodinium genus. Of these exclusively Symbiodinium-associating sites, the more northern (27° and 22°) and more southern sites (20° and 18°) formed two separate groupings despite site-specific algal genotypes being resolved at each site. These groupings were congruent with the genetic break seen across multiple marine taxa in the Red Sea at approximately 19°, and along with our documented site-specificity of algal communities, contrasted the panmictic distribution of the T. maxima host. As such, our findings indicate flexibility in T. maxima-Symbiodiniaceae associations that may explain its relatively high environmental plasticity and offers a mechanism for environmental niche adaptation.

Pubmed ID: 33841792 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI BioProject (tool)

RRID:SCR_004801

Database of biological data related to a single initiative, originating from a single organization or from a consortium. A BioProject record provides users a single place to find links to the diverse data types generated for that project. It is a searchable collection of complete and incomplete (in-progress) large-scale sequencing, assembly, annotation, and mapping projects for cellular organisms. Submissions are supported by a web-based Submission Portal. The database facilitates organization and classification of project data submitted to NCBI, EBI and DDBJ databases that captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. BioProject records link to corresponding data stored in archival repositories. The BioProject resource is a redesigned, expanded, replacement of the NCBI Genome Project resource. The redesign adds tracking of several data elements including more precise information about a project''''s scope, material, and objectives. Genome Project identifiers are retained in the BioProject as the ID value for a record, and an Accession number has been added. Database content is exchanged with other members of the International Nucleotide Sequence Database Collaboration (INSDC). BioProject is accessible via FTP.

View all literature mentions

Dryad Digital Repository (tool)

RRID:SCR_005910

International, curated, digital repository that makes the data underlying scientific publications discoverable, freely reusable, and citable. Particularly data for which no specialized repository exists. Provides the infrastructure for, and promotes the re-use of, data underlying the scholarly literature. Governed by a nonprofit membership organization. Membership is open to any stakeholder organization, including but not limited to journals, scientific societies, publishers, research institutions, libraries, and funding organizations. Most data are associated with peer-reviewed articles, although data associated with non-peer reviewed publications from reputable academic sources, such as dissertations, are also accepted. Used to validate published findings, explore new analysis methodologies, repurpose data for research questions unanticipated by the original authors, and perform synthetic studies.UC system is member organization of Dryad general subject data repository.

View all literature mentions

MatPlotLib (tool)

RRID:SCR_008624

Python 2D plotting library which produces publication quality figures in variety of hardcopy formats and interactive environments across platforms. Used in python scripts, web application servers, and six graphical user interface toolkits. Used to generate plots, histograms, power spectra, bar charts, error charts, scatter plots.

View all literature mentions

Millipore (tool)

RRID:SCR_008983

An Antibody supplier

View all literature mentions

MAFFT (tool)

RRID:SCR_011811

Software package as multiple alignment program for amino acid or nucleotide sequences. Can align up to 500 sequences or maximum file size of 1 MB. First version of MAFFT used algorithm based on progressive alignment, in which sequences were clustered with help of Fast Fourier Transform. Subsequent versions have added other algorithms and modes of operation, including options for faster alignment of large numbers of sequences, higher accuracy alignments, alignment of non-coding RNA sequences, and addition of new sequences to existing alignments.

View all literature mentions

Agilent Technologies (tool)

RRID:SCR_013575

Company provides laboratories worldwide with analytical instruments and supplies, clinical and diagnostic testing services, consumables, applications and expertise in life sciences and applied chemical markets.

View all literature mentions