Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identification of a novel family of carbohydrate-binding modules with broad ligand specificity.

Scientific reports | 2016

Most enzymes that act on carbohydrates include non-catalytic carbohydrate-binding modules (CBMs) that recognize and target carbohydrates. CBMs bring their appended catalytic modules into close proximity with the target substrate and increase the hydrolytic rate of enzymes acting on insoluble substrates. We previously identified a novel CBM (CBMC5614-1) at the C-terminus of endoglucanase C5614-1 from an uncultured microorganism present in buffalo rumen. In the present study, that the functional region of CBMC5614-1 involved in ligand binding was localized to 134 amino acids. Two representative homologs of CBMC5614-1, sharing the same ligand binding profile, targeted a range of β-linked polysaccharides that adopt very different conformations. Targeted substrates included soluble and insoluble cellulose, β-1,3/1,4-mixed linked glucans, xylan, and mannan. Mutagenesis revealed that three conserved aromatic residues (Trp-380, Tyr-411, and Trp-423) play an important role in ligand recognition and targeting. These results suggest that CBMC5614-1 and its homologs form a novel CBM family (CBM72) with a broad ligand-binding specificity. CBM72 members can provide new insight into CBM-ligand interactions and may have potential in protein engineering and biocatalysis.

Pubmed ID: 26765840 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Bioinformatics Institute (tool)

RRID:SCR_004727

Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.

View all literature mentions

CAZy- Carbohydrate Active Enzyme (tool)

RRID:SCR_012909

Database that describes the families of structurally-related catalytic and carbohydrate-binding modules (or functional domains) of enzymes that degrade, modify, or create glycosidic bonds. This specialist database is dedicated to the display and analysis of genomic, structural and biochemical information on Carbohydrate-Active Enzymes (CAZymes). CAZy data are accessible either by browsing sequence-based families or by browsing the content of genomes in carbohydrate-active enzymes. New genomes are added regularly shortly after they appear in the daily releases of GenBank. New families are created based on published evidence for the activity of at least one member of the family and all families are regularly updated, both in content and in description. An original aspect of the CAZy database is its attempt to cover all carbohydrate-active enzymes across organisms and across subfields of glycosciences. One can search for CAZY Family pages using the Protein Accession (Genpept Accession, Uniprot Accession or PDB ID), Cazy family name or EC number. In addition, genomes can be searched using the NCBI TaxID. This search can be complemented by Google-based searches on the CAZy site.

View all literature mentions

Clustal W2 (tool)

RRID:SCR_002909

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19, 2022. Command line version of multiple sequence alignment program Clustal for DNA or proteins. Alignment is progressive and considers sequence redundancy. No longer being maintained. Please consider using Clustal Omega instead which accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/ClustalW, GCG/MSF, RSF.

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

SMART (tool)

RRID:SCR_005026

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

View all literature mentions