Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.




Homo sapiens


Part of: ENCODE project common cell types; tier 3. Part of: MD Anderson Cell Lines Project. Doubling time: ~30 hours (CLS); ~24-30 hours (DSMZ). HLA typing: A*02:01,03:01; B*07:02,07:02/35:08; C*07:02,07:02; DQA1*01:02,01:02; DQB1*06:02,06:02; DRB1*15:01,15:01 (PubMed=25960936). Transformant: NCBI_TaxID; 28285; Adenovirus 5. Omics: Cell surface proteome. Omics: Deep antibody staining analysis. Omics: Deep proteome analysis. Omics: Deep RNAseq analysis. Omics: Genome sequenced. Omics: DNA methylation analysis. Omics: H3K4me3 ChIP-seq epigenome analysis. Omics: Metabolome analysis. Omics: Methylated arginine analysis by proteomics. Omics: Myristoylated proteins analysis by proteomics. Omics: Protein expression by reverse-phase protein arrays. Omics: Transcriptome analysis. Omics: Virome analysis using proteomics. Misspelling: HECK293; Occasionally. Misspelling: HEK239; Occasionally.

Proper Citation

BCRC Cat# 60019, RRID:CVCL_0045


Transformed cell line




Hek293, HEK-293, HEK 293, HEK, 293, 293, 293 HEK, Human Embryonic Kidney 293



Cat Num


Cross References

BTO; BTO:0000007 CLO; CLO_0001230 CLO; CLO_0050903 EFO; EFO_0001182 MCCL; MCC:0000006 CLDB; cl45 CLDB; cl46 CLDB; cl47 CLDB; cl7133 4DN; 4DNSRVF4XB1F AddexBio; T0011001/76 ATCC; CRL-1573 ATCC; PTA-4488 BCRC; 60019 BCRJ; 0009 BEI_Resources; NR-9313 BioSample; SAMN03471398 BioSample; SAMN03473347 BioSamples; SAMEA2018185 CCLV; CCLV-RIE 0197 CCRID; 3111C0001CCC000010 CCRID; 3111C0002000000005 CCRID; 3131C0001000200001 CCRID; 3131C0001000200018 ChEMBL-Cells; CHEMBL3307715 ChEMBL-Targets; CHEMBL614818 CLS; 300192/p777_HEK293 Cosmic; 2520629 Cosmic; 2560255 DSMZ; ACC-305 eagle-i; hawaii.eagle-i.net/i/0000012b-5664-9d02-2f73-b43980000000 ECACC; 85120602 ENCODE; ENCBS022BLS ENCODE; ENCBS209KHO ENCODE; ENCBS264HQL ENCODE; ENCBS375ENC ENCODE; ENCBS393ENC ENCODE; ENCBS421ENC ENCODE; ENCBS439ENC ENCODE; ENCBS479AAA ENCODE; ENCBS480AAA ENCODE; ENCBS481AAA ENCODE; ENCBS482AAA ENCODE; ENCBS483AAA ENCODE; ENCBS484AAA ENCODE; ENCBS486AAA ENCODE; ENCBS522ENC ENCODE; ENCBS523ENC ENCODE; ENCBS613RZL ENCODE; ENCBS906GPZ GEO; GSM580027 GEO; GSM580028 GEO; GSM635701 GEO; GSM635702 GEO; GSM635703 GEO; GSM635704 GEO; GSM651571 GEO; GSM945256 GEO; GSM945288 GEO; GSM1374525 ICLC; HTL03003 IZSLER; BS CL 129 JCRB; JCRB9068 KCB; KCB 200408YJ KCB; KCB 200971YJ KCLB; 21573 Lonza; 46 MetaboLights; MTBLS102 MetaboLights; MTBLS156 MetaboLights; MTBLS737 NCBI_Iran; C497 NIH-ARP; 103-306 PRIDE; PXD000589 PRIDE; PXD000623 PRIDE; PXD000680 PRIDE; PXD000933 PRIDE; PXD000953 PRIDE; PXD001468 PRIDE; PXD001511 PRIDE; PXD001711 PRIDE; PXD001863 PRIDE; PXD002383 PRIDE; PXD002389 PRIDE; PXD002395 PRIDE; PXD002601 PRIDE; PXD002676 PRIDE; PXD003370 PRIDE; PXD003700 PRIDE; PXD003896 PRIDE; PXD005535 PRIDE; PXD005955 PRIDE; PXD009668 RCB; RCB1637 TKG; TKG 0306 TOKU-E; 31 Wikidata; Q489618

Publications that use this research resource

Reciprocal modulation of Cav 2.3 voltage-gated calcium channels by copper(II) ions and kainic acid.

  • Neumaier F
  • J. Neurochem.
  • 2018 Jul 4

Literature context: bryonic kidney (HEK-293) cells (RRID:CVCL_0045) stably transfected with human


Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic glutamate receptors and commonly used to induce seizures and excitotoxicity in animal models of human temporal lobe epilepsy. Among other factors, Cav 2.3 voltage-gated calcium channels have been implicated in the pathogenesis of KA-induced seizures. At physiologically relevant concentrations, endogenous transition metal ions (Cu2+ , Zn2+ ) occupy an allosteric binding site on the domain I gating module of these channels and interfere with voltage-dependent gating. Using whole-cell patch-clamp recordings in human embryonic kidney (HEK-293) cells stably transfected with human Cav 2.3d and β3 -subunits, we identified a novel, glutamate receptor-independent mechanism by which KA can potently sensitize these channels. Our findings demonstrate that KA releases these channels from the tonic inhibition exerted by low nanomolar concentrations of Cu2+ and produces a hyperpolarizing shift in channel voltage-dependence by about 10 mV, thereby reconciling the effects of Cu2+ chelation with tricine. When tricine was used as a surrogate to study the receptor-independent action of KA in electroretinographic recordings from the isolated bovine retina, it selectively suppressed a late b-wave component, which we have previously shown to be enhanced by genetic or pharmacological ablation of Cav 2.3 channels. Although the pathophysiological relevance remains to be firmly established, we speculate that reversal of Cu2+ -induced allosteric suppression, presumably via formation of stable kainate-Cu2+ complexes, could contribute to the receptor-mediated excitatory effects of KA. In addition, we discuss experimental implications for the use of KA in vitro, with particular emphasis on the seemingly high incidence of trace metal contamination in common physiological solutions. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - GM03569(United States)

Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome.

  • Ramachandran KV
  • Mol. Cell
  • 2018 Jul 5

Literature context: tal Models: Cell LinesHEK293ATCCCRL-1573Experimental Models: Organisms/S


Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.

Funding information:
  • NHLBI NIH HHS - 1R01-HL092842(United States)

TRPV4 is the temperature-sensitive ion channel of human sperm.

  • Mundt N
  • Elife
  • 2018 Jul 2

Literature context: RRID:CVRL_0045


Ion channels control human sperm fertilizing ability by triggering hyperactivated motility, which is regulated by membrane potential, intracellular pH, and cytosolic calcium. Previous studies unraveled three essential ion channels that regulate these parameters: 1) the Ca2+ channel CatSper, 2) the K+ channel KSper, and 3) the H+ channel Hv1. However, the molecular identity of the sperm Na+ conductance that mediates initial membrane depolarization and, thus, triggers downstream signaling events is yet to be defined. Here, we functionally characterize DSper, the Depolarizing Channel of Sperm, as the temperature-activated channel TRPV4. It is functionally expressed at both mRNA and protein levels, while other temperature-sensitive TRPV channels are not functional in human sperm. DSper currents are activated by warm temperatures and mediate cation conductance, that shares a pharmacological profile reminiscent of TRPV4. Together, these results suggest that TRPV4 activation triggers initial membrane depolarization, facilitating both CatSper and Hv1 gating and, consequently, sperm hyperactivation.

Funding information:
  • Alfred P. Sloan Foundation - FR‐2015‐65398()
  • National Institute of General Medical Sciences - R01GM111802()
  • NHLBI NIH HHS - HL59157(United States)
  • Pew Charitable Trusts - 28642()

Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression.

  • Sato J
  • J. Neurochem.
  • 2018 Jul 7

Literature context: ips and cultured. HEK293 cells (RRID:CVCL_0045) were transfected with plasmids


In the central nervous system, astrocytes extend endfoot processes to ensheath synapses and microvessels. However, the mechanisms underlying this astrocytic process extension remain unclear. A limitation of the use of 2D cultured astrocytes for such studies is that they display a flat, epithelioid morphology, with no or very few processes, which is markedly different from the stellate morphology observed in vivo. In the present study, we obtained 2D cultured astrocytes with a rich complexity of processes using differentiation of neurospheres in vitro. Using these process-bearing astrocytes, we showed that laminin, an extracellular matrix molecule abundant in perivascular sites, efficiently induced process formation and branching. Specifically, the numbers of the first- and second-order branch processes and the maximal process length of astrocytes were increased when cultured on laminin, compared with when they were cultured on poly-L-ornithine or type IV collagen. Knockdown of dystroglycan or α-syntrophin, constituent proteins of the dystrophin-glycoprotein complex that provides a link between laminin and the cytoskeleton, using small interference RNAs inhibited astrocyte process formation and branching, and downregulated expression of the water channel aquaporin-4 (AQP4). Direct knockdown and a specific inhibitor of AQP4 also inhibited, whereas overexpression of AQP4 enhanced astrocyte process formation and branching. Knockdown of AQP4 decreased phosphorylation of focal adhesion kinase (FAK) that is critically implicated in actin remodeling. Collectively, these results indicate that the laminin-dystroglycan-α-syntrophin-AQP4 axis is important for process formation and branching of 2D cultured astrocytes. This article is protected by copyright. All rights reserved.

Funding information:
  • NHLBI NIH HHS - R01 HL095799(United States)

Visualization of Synchronous or Asynchronous Release of Single Synaptic Vesicle in Active-Zone-Like Membrane Formed on Neuroligin-Coated Glass Surface.

  • Funahashi J
  • Front Cell Neurosci
  • 2018 Jun 8

Literature context: from transfected HEK293 cells (RRID:CVCL_0045) using nProtein A Sepharose (GE


Fast repetitive synaptic transmission depends on efficient exocytosis and retrieval of synaptic vesicles around a presynaptic active zone. However, the functional organization of an active zone and regulatory mechanisms of exocytosis, endocytosis and reconstruction of release-competent synaptic vesicles have not been fully elucidated. By developing a novel visualization method, we attempted to identify the location of exocytosis of a single synaptic vesicle within an active zone and examined movement of synaptic vesicle protein synaptophysin (Syp) after exocytosis. Using cultured hippocampal neurons, we induced formation of active-zone-like membranes (AZLMs) directly adjacent and parallel to a glass surface coated with neuroligin, and imaged Syp fused to super-ecliptic pHluorin (Syp-SEP) after its translocation to the plasma membrane from a synaptic vesicle using total internal reflection fluorescence microscopy (TIRFM). An AZLM showed characteristic molecular and functional properties of a presynaptic active zone. It contained active zone proteins, cytomatrix at the active zone-associated structural protein (CAST), Bassoon, Piccolo, Munc13 and RIM, and showed an increase in intracellular Ca2+ concentration upon electrical stimulation. In addition, single-pulse stimulation sometimes induced a transient increase of Syp-SEP signal followed by lateral spread in an AZLM, which was considered to reflect an exocytosis event of a single synaptic vesicle. The diffusion coefficient of Syp-SEP on the presynaptic plasma membrane after the membrane fusion was estimated to be 0.17-0.19 μm2/s, suggesting that Syp-SEP diffused without significant obstruction. Synchronous exocytosis just after the electrical stimulation tended to occur at multiple restricted sites within an AZLM, whereas locations of asynchronous release occurring later after the stimulation tended to be more scattered.

Funding information:
  • NCI NIH HHS - R01 CA99978(United States)

UBE2M Is a Stress-Inducible Dual E2 for Neddylation and Ubiquitylation that Promotes Targeted Degradation of UBE2F.

  • Zhou W
  • Mol. Cell
  • 2018 Jun 21

Literature context: -5928H1299ATCCCRL-5803HEK293ATCCCRL-1573Experimental Models: Organisms/S


UBE2M and UBE2F are two family members of neddylation E2 conjugating enzyme that, together with E3s, activate CRLs (Cullin-RING Ligases) by catalyzing cullin neddylation. However, whether and how two E2s cross-talk with each other are largely unknown. Here, we report that UBE2M is a stress-inducible gene subjected to cis-transactivation by HIF-1 and AP1, and MLN4924, a small molecule inhibitor of E1 NEDD8-activating enzyme (NAE), upregulates UBE2M via blocking degradation of HIF-1α and c-JUN. UBE2M is a dual E2 for targeted ubiquitylation and degradation of UBE2F, acting as a neddylation E2 to activate CUL3-Keap1 E3 under physiological conditions but as a ubiquitylation E2 for Parkin-DJ-1 E3 under stressed conditions. UBE2M-induced UBE2F degradation leads to CRL5 inactivation and subsequent NOXA accumulation to suppress the growth of lung cancer cells. Collectively, our study establishes a negative regulatory axis between two neddylation E2s with UBE2M ubiquitylating UBE2F, and two CRLs with CRL3 inactivating CRL5.

Funding information:
  • NCI NIH HHS - R01 CA156744()
  • NCI NIH HHS - R01 CA171277()
  • NCI NIH HHS - R01-CA078461(United States)

Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation.

  • Merten N
  • Cell Chem Biol
  • 2018 Jun 21

Literature context: HEK293 ATCC Cat# CRL-1573; RRID:CVCL_0045 hGPR17-1321N1 Prof. Christa E.


Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.

Funding information:
  • NIGMS NIH HHS - GM30186(United States)

FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry.

  • Schatton A
  • J. Comp. Neurol.
  • 2018 Jun 15

Literature context: s (CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045) as described in Mendoza et al.


Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.

Funding information:
  • NIGMS NIH HHS - GM069418(United States)

Synthetic Immunotherapeutics against Gram-negative Pathogens.

  • Feigman MS
  • Cell Chem Biol
  • 2018 Jun 12

Literature context: dels: Cell LinesHEK293ATCCATCC® CRL-1573Experimental Models: Organisms/S


While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.

Funding information:
  • NCRR NIH HHS - RR024574(United States)

Time-dependent expression pattern of cytochrome P450 epoxygenases and soluble epoxide hydrolase in normal human placenta.

  • Cizkova K
  • Acta Histochem.
  • 2018 Jun 13

Literature context: ples were obtained from HEK293 (RRID:CVCL_0045) and HepG2 (RRID:CVCL_0027)) ce


CYP2C and CYP2 J enzymes, commonly named as cytochrome P450 (CYP) epoxygenases, convert arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs), biologically active eicosanoids with many functions in organism. EETs are rapidly hydrolysed to less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). We investigated spatio-temporal expression pattern of CYP2C8, CYP2C9, CYP2 J2 and sEH in normal human placenta by immunohistochemical method. In the villous trophoblast, CYP2C8 was the most abundant protein. Its expression is higher than the CYP2C9 and CYP2 J2 in the cytotrophoblast in the embryonic stage of development and remains higher in syncytiotrophoblast of term placenta. Unlike to CYP2C8, CYP2C9 and CYP2 J2 expression decrease in term placenta. sEH expression increases with gestation age and is strictly limited to cytotrophoblast in embryonic and foetal stages of the development. Moreover, CYP2C8 shows more intensive staining than the other protein monitored in Hofbauer cells in villous stroma. Specific information regarding the exact role of EETs and DHETs functions in a normal placenta is still unknown. Based on CYP epoxygenases and sEH localization and well known information about the functions of placental structures during development, we suggest that these enzymes could play different roles in various cell populations in the placenta. As the placenta is absolutely crucial for prenatal development, arachidonic acid is essential part of human nutrient and CYP epoxygenases expression can be affected by xenobiotics, further investigation of the exact role of CYP epoxygenases, sEH, and their metabolites in normal pregnancy and under pathological conditions is needed.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/I003142/1(United Kingdom)

ZMYND10 functions in a chaperone relay during axonemal dynein assembly.

  • Mali GR
  • Elife
  • 2018 Jun 19

Literature context: Cell line (H. sapiens)HEK293ATCCCRL-1573Human embryonic kidney cell line


Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that Primary Ciliary Dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.

Funding information:
  • Medical Research Council - MRC_UU_12018/26()
  • NCI NIH HHS - R44 CA165312(United States)

Defects in the Alternative Splicing-Dependent Regulation of REST Cause Deafness.

  • Nakano Y
  • Cell
  • 2018 Jun 25

Literature context: Cell LinesHEK293 cellsATCCCat# CRL-1573Neuro2a cellsATCCCat# CCL-131Exp


The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.

Funding information:
  • NIMH NIH HHS - 5 F32 MH064339-03(United States)

The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress.

  • Kim KH
  • Cell Metab.
  • 2018 Jun 27

Literature context: American Type Culture CollectionCRL-1573HepG2American Type Culture Colle


Cellular homeostasis is coordinated through communication between mitochondria and the nucleus, organelles that each possess their own genomes. Whereas the mitochondrial genome is regulated by factors encoded in the nucleus, the nuclear genome is currently not known to be actively controlled by factors encoded in the mitochondrial DNA. Here, we show that MOTS-c, a peptide encoded in the mitochondrial genome, translocates to the nucleus and regulates nuclear gene expression following metabolic stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. In the nucleus, MOTS-c regulated a broad range of genes in response to glucose restriction, including those with antioxidant response elements (ARE), and interacted with ARE-regulating stress-responsive transcription factors, such as nuclear factor erythroid 2-related factor 2 (NFE2L2/NRF2). Our findings indicate that the mitochondrial and nuclear genomes co-evolved to independently encode for factors to cross-regulate each other, suggesting that mitonuclear communication is genetically integrated.

Funding information:
  • NIDDK NIH HHS - DK074310(United States)

5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling.

  • Murat S
  • Mol. Psychiatry
  • 2018 Jun 1

Literature context: ney-293 (HEK-293) N type cells (RRID:CVCL_0045) were from the American Type Cu


The serotonin 5-HT2A and glutamate mGlu2 receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT2A receptor upon the phosphorylation pattern of mGlu2 receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes. Among the five mGlu2 receptor-phosphorylated residues identified in HEK-293 cells, the phosphorylation of Ser843 was enhanced upon mGlu2 receptor stimulation by the orthosteric agonist LY379268 only in cells co-expressing the 5-HT2A receptor. Likewise, administration of LY379268 increased mGlu2 receptor phosphorylation at Ser843 in prefrontal cortex of wild-type mice but not 5-HT2A-/- mice. Exposure of HEK-293 cells co-expressing mGlu2 and 5-HT2A receptors to 5-HT also increased Ser843 phosphorylation state to a magnitude similar to that measured in LY379268-treated cells. In both HEK-293 cells and prefrontal cortex, Ser843 phosphorylation elicited by 5-HT2A receptor stimulation was prevented by the mGlu2 receptor antagonist LY341495, while the LY379268-induced effect was abolished by the 5-HT2A receptor antagonist M100907. Mutation of Ser843 into alanine strongly reduced Gi/o signaling elicited by mGlu2 or 5-HT2A receptor stimulation in cells co-expressing both receptors. Collectively, these findings identify mGlu2 receptor phosphorylation at Ser843 as a key molecular event that underlies the functional crosstalk between both receptors.

Funding information:
  • Medical Research Council - G0600705(United Kingdom)

SAD-A Promotes Glucose-stimulated Insulin Secretion through Phosphorylation and Inhibition of GDIα in Male Islet β-cells.

  • Nie J
  • Endocrinology
  • 2018 Jun 4

Literature context: for mycoplasma. The 293T cells (RRID:CVCL_0045) purchased from the ATCC were c


Rho GDP-dissociation inhibitor (GDIα) inhibits glucose-stimulated insulin secretion (GSIS) in part by locking Rho GTPases in an inactive GDP-bound form. The onset of GSIS causes phosphorylation of GDIα at Ser174, a critical inhibitory site for GDIα, leading to the release of Rho GTPases and their subsequent activation. However, the kinase regulator(s) that catalyzes the phosphorylation of GDIα in islet β-cells remains elusive. We propose that SAD-A, a member of AMPK-related kinases that promotes GSIS as an effector kinase for incretin signaling, interact with and inhibit GDIα through phosphorylation of Ser174 during the onset GSIS from islet β-cells. Co-immunoprecipitation and phosphorylation analyses were carried out to identify the physical interaction and phosphorylation site of GDIα by SAD-A in the context of glucose-stimulated insulin secretion from INS-1 β-cells and primary islets. We identified GDIα directly binds to SAD-A kinase domain and phosphorylated by SAD-A on Ser174, leading to dissociation of Rho GTPases from GDIα complexes. Accordingly, overexpression of SAD-A significantly stimulated GDIα phosphorylation at Ser174 in response to GSIS, which is dramatically potentiated by GLP-1, an incretin hormone. Conversely, SAD-A deficiency, which is mediated by shRNA transfection in INS-1 cells, significantly attenuated endogenous GDIα phosphorylation at Ser174. Consequently, co-expression of SAD-A completely prevented the inhibitory effect of GDIα on insulin secretion in islets. In summary, glucose and incretin stimulate insulin secretion through the phosphorylation of GDIα at Ser174 by SAD-A which leads to the activation of Rho GTPases, culminating in insulin exocytosis.

Funding information:
  • NIAID NIH HHS - R01 AI0417351(United States)

Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria.

  • Qian M
  • Elife
  • 2018 May 2

Literature context: Catalog number: ATCC CRL-1573; RRID:CVCL_0042


DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.

Funding information:
  • Department of Health - (United Kingdom)
  • Ministry of Science and Technology of the People's Republic of China - 2016YFC0904600()
  • Ministry of Science and Technology of the People's Republic of China - 2017YFA0503900()
  • National Natural Science Foundation of China - 81422016()
  • National Natural Science Foundation of China - 81501206()
  • National Natural Science Foundation of China - 81501210()
  • National Natural Science Foundation of China - 81571374()
  • National Natural Science Foundation of China - 91439133()
  • Natural Science Foundation of Guangdong Province - 2014A030308011()
  • Natural Science Foundation of Guangdong Province - 2015A030308007()
  • Natural Science Foundation of Guangdong Province - 2016A030310064()
  • Research Grant Council of Hong Kong - 773313()
  • Research Grant Council of Hong Kong - HKU2/CRF/13G()
  • Shenzhen Science and Technology Innovation Commission - CXZZ20140903103747568()
  • Shenzhen Science and Technology Innovation Commission - JCYJ20140418095735645()
  • Shenzhen Science and Technology Innovation Commission - JCYJ20160226191451487()

The Orphan G Protein-coupled Receptor 75 Signaling is Activated by the Chemokine CCL5.

  • Dedoni S
  • J. Neurochem.
  • 2018 May 17

Literature context: e HEK293 (ATCC, Cat # CRL-1573, RRID:CVCL_0045) were used. Cells were grown fo


The chemokine CCL5 prevents neuronal cell death mediated both by amyloid β, as well as the human immunodeficiency virus (HIV) viral proteins gp120 and Tat. Because CCL5 binds to CCR5, CCR3 and/or CCR1 receptors, it is unclear which of these receptors plays a role in neuroprotection. Indeed, CCL5 also has neuroprotective activity in cells lacking these receptors. CCL5 may bind to a G protein-coupled receptor 75 (GPR75), which encodes for a 540 amino-acid orphan receptor of the Gqα family. In this study, we have used SH-SY5Y human neuroblastoma cells to characterize whether CCL5 could activate a Gq signaling through GPR75. Both qPCR and flow cytometry show that these cells express GPR75 but do not express CCR5, CCR3 or CCR1 receptors. SY-SY5Y cells were then used to examine CCL5-mediated signaling. We report that CCL5 promotes a time- and concentration-dependent phosphorylation of protein kinase B (AKT), glycogen synthase kinase 3β and extracellular signal-regulated kinase (ERK) 1/2. Specific antagonists of CCR5, CCR3 and CCR1 did not prevent CCL5 from increasing phosphorylated AKT or ERK. Moreover, CCL5 promotes a time-dependent internalization of GPR75. Lastly, knocking down GPR75 expression by a CRISPR-Cas9 approach inhibited the ability of CCL5 to activate pERK in SH-SY5Y cells. Therefore, we propose that GPR75 is a novel receptor for CCL5 that could explain some of the pharmacological action of this chemokine. These findings may help in the development of small molecule GPR75 agonists that mimic CCL5. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - R15GM055885(United States)
  • NINDS NIH HHS - R21 NS089446()

The homeodomain transcription factor Prox1 is a direct target of SoxC proteins during developmental vertebrate neurogenesis.

  • Jacob A
  • J. Neurochem.
  • 2018 May 11

Literature context: Wesel, Germany, Cat# CRL-1573, RRID:CVCL_0045) and HeLa cells (ATCC, Cat# CCL


The high-mobility-group-domain containing SoxC transcription factors Sox4 and Sox11 are expressed and required in the vertebrate central nervous system in neuronal precursors and neuroblasts. To identify genes that are widely regulated by SoxC proteins during vertebrate neurogenesis we generated expression profiles from developing mouse brain and chicken neural tube with reduced SoxC expression and found the transcription factor Prox1 strongly downregulated under both conditions. This led us to hypothesize that Prox1 expression depends on SoxC proteins in the developing central nervous system of mouse and chicken. By combining luciferase reporter assays and overexpression in the chicken neural tube with in vivo and in vitro binding studies, we identify the Prox1 gene promoter and two upstream enhancers at -44 kb and -40 kb relative to the transcription start as regulatory regions that are bound and activated by SoxC proteins. This argues that Prox1 is a direct target gene of SoxC proteins during neurogenesis. Electroporations in the chicken neural tube furthermore show that Prox1 activates a subset of SoxC target genes, whereas it has no effects on others. We propose that the transcriptional control of Prox1 by SoxC proteins may ensure coupling of two types of transcription factors that are both required during early neurogenesis, but have at least in part distinct functions. This article is protected by copyright. All rights reserved.

Funding information:
  • NCRR NIH HHS - S10 RR024615(United States)

The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix.

  • Gundogdu M
  • Cell Chem Biol
  • 2018 May 17

Literature context: al Models: Cell LinesHEK-293ATCCCRL-1573OligonucleotidesPrimer TPR: Forw


O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis.

Funding information:
  • NIGMS NIH HHS - GM086856(United States)

Arginine Methylation by PRMT2 Controls the Functions of the Actin Nucleator Cobl.

  • Hou W
  • Dev. Cell
  • 2018 Apr 23

Literature context: HEK293 Cell Lines Services GmbH RRID:CVCL_0045 COS-7 Cell Lines Services GmbH


The complex architecture of neuronal networks in the brain requires tight control of the actin cytoskeleton. The actin nucleator Cobl is critical for neuronal morphogenesis. Here we reveal that Cobl is controlled by arginine methylation. Coprecipitations, coimmunoprecipitations, cellular reconstitutions, and in vitro reconstitutions demonstrated that Cobl associates with the protein arginine methyltransferase PRMT2 in a Src Homology 3 (SH3) domain-dependent manner and that this promotes methylation of Cobl's actin nucleating C-terminal domain. Consistently, PRMT2 phenocopied Cobl functions in both gain- and loss-of-function studies. Both PRMT2- and Cobl-promoted dendritogenesis relied on methylation. PRMT2 effects require both its catalytic domain and SH3 domain. Cobl-mediated dendritic arborization required PRMT2, complex formation with PRMT2, and PRMT2's catalytic activity. Mechanistic studies reveal that Cobl methylation is key for Cobl actin binding. Therefore, arginine methylation is a regulatory mechanism reaching beyond controlling nuclear processes. It also controls a major, cytosolic, cytoskeletal component shaping neuronal cells.

Funding information:
  • NHLBI NIH HHS - HL24415(United States)

Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction.

  • Morioka S
  • J. Neurochem.
  • 2018 Apr 20

Literature context: 293 cells (ATCC, Cat# CRL-1573, RRID:CVCL_0045) were maintained in Eagle's min


Previous studies have convincingly argued that reactive oxygen species (ROS) contribute to the development of several major types of sensorineural hearing loss, such as noise-induced hearing loss (NIHL), drug-induced hearing loss, and age-related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG) mouse line expressing the human NADPH oxidase 4 (NOX4, NOX4-TG mice), which is a constitutively active ROS-producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX4-TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high-frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHCs). The vulnerability to loss of hearing function and OHCs was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat shock protein 47 (HSP47) in models using HEK293 cells, including H2 O2 treatment and cells with stable and transient expression of NOX4. Furthermore, the upregulated levels of Hsp47 were observed in both the cochlea and heart of NOX4-TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL. Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo, and counteracting ROS-related hearing loss. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - T32 GM007388(United States)

Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability.

  • Kwasna D
  • Mol. Cell
  • 2018 Apr 5

Literature context: 293 ATCC Cat# CRL-1573, RRID:CVCL_0045 Jurkat ATCC Cat# TIB-152, RRID:


Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.

Funding information:
  • NIA NIH HHS - R21 AG040683(United States)

CaMKIIβ is localized in dendritic spines as both drebrin-dependent and drebrin-independent pools.

  • Yamazaki H
  • J. Neurochem.
  • 2018 Apr 20

Literature context: aMKIIβ fragments, HEK293 cells (RRID:CVCL_0045) were harvested in lysis buffer


Drebrin is a major F-actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin-binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+ /calmodulin-dependent protein kinase II (CaMKIIβ) as a drebrin-binding protein using a yeast two-hybrid system, and investigated the drebrin-CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin-independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post-synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin-binding F-actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.

Funding information:
  • NCI NIH HHS - R01 CA140657(United States)

Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons.

  • Narayanan P
  • Elife
  • 2018 Mar 9

Literature context: man) HEK293 purchased from ATCC RRID:CVCL_0045 Cells were not tested for mycop


Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.

Funding information:
  • Deutsche Forschungsgemeinschaft - CRC 937 Project A13()
  • Deutsche Forschungsgemeinschaft - CRC889 Project A9()
  • Deutsche Forschungsgemeinschaft - GO 2481/2-1()
  • Deutsche Forschungsgemeinschaft - SCHM 2533/2-1()
  • Göttinger Graduiertenschule für Neurowissenschaften, Biophysik und Molekulare Biowissenschaften - PhD fellowship()
  • Max-Planck-Gesellschaft - Open-access funding()
  • NIMH NIH HHS - R37 MH059520(United States)

SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer.

  • Fang Z
  • Elife
  • 2018 Mar 16

Literature context: Catalog number: ATCC CRL-1573; RRID:CVCL_0045


Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here, we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity toward p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.

Funding information:
  • National Institutes of Health - 2G12MD007595()
  • National Institutes of Health - R01CA095441()
  • National Institutes of Health - R01CA127724()
  • National Institutes of Health - R01CA172468()
  • National Institutes of Health - R21 CA201889()
  • National Institutes of Health - R21CA190775()
  • NCI NIH HHS - CA89194(United States)

APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

  • Saito-Diaz K
  • Dev. Cell
  • 2018 Mar 12

Literature context: tal Models: Cell LinesHEK293ATCCCRL-1573HEK293 STFLaboratory of Jeremy N


Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.

Funding information:
  • BLRD VA - I01 BX001426()
  • NCATS NIH HHS - UL1 TR000445()
  • NCATS NIH HHS - UL1 TR002243()
  • NCI NIH HHS - P30 CA068485()
  • NCI NIH HHS - P50 CA095103()
  • NCI NIH HHS - R01 CA069457()
  • NCI NIH HHS - R01 CA105038()
  • NIDDK NIH HHS - F30 DK111107()
  • NIDDK NIH HHS - R01 DK099204()
  • NIGMS NIH HHS - R01 GM081635()
  • NIGMS NIH HHS - R01 GM103926()
  • NIGMS NIH HHS - R01 GM106720()
  • NIGMS NIH HHS - R01 GM121421()
  • NIGMS NIH HHS - R01 GM122222()
  • NIGMS NIH HHS - R35 GM122516()
  • NIGMS NIH HHS - T32 GM007347()
  • NIH HHS - OD008466(United States)
  • NIH HHS - P40 OD018537()

Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels.

  • Nussbacher JK
  • Mol. Cell
  • 2018 Mar 15

Literature context: L-243HepG2ATCCHB-8065HEK293TATCCCRL-1573OligonucleotidesshRNAs for RBPs,


RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.

Funding information:
  • Howard Hughes Medical Institute - 5T32GM007454(United States)

The Sixth Transmembrane Segment Is a Major Gating Component of the TMEM16A Calcium-Activated Chloride Channel.

  • Peters CJ
  • Neuron
  • 2018 Mar 7

Literature context: HEK293 cells (ATCC, RRID:CVCL_0045) were maintained at 37°C and 5%


Calcium-activated chloride channels (CaCCs) formed by TMEM16A or TMEM16B are broadly expressed in the nervous system, smooth muscles, exocrine glands, and other tissues. With two calcium-binding sites and a pore within each monomer, the dimeric CaCC exhibits voltage-dependent calcium sensitivity. Channel activity also depends on the identity of permeant anions. To understand how CaCC regulates neuronal signaling and how CaCC is, in turn, modulated by neuronal activity, we examined the molecular basis of CaCC gating. Here, we report that voltage modulation of TMEM16A-CaCC involves voltage-dependent occupancy of calcium- and anion-binding site(s) within the membrane electric field as well as a voltage-dependent conformational change intrinsic to the channel protein. These gating modalities all critically depend on the sixth transmembrane segment.

Funding information:
  • Canadian Institutes of Health Research - MOP 44365(Canada)
  • NIBIB NIH HHS - T32 EB009383()
  • NIDA NIH HHS - K99 DA041500()
  • NIGMS NIH HHS - R01 GM089740()
  • NIGMS NIH HHS - R01 GM117593()
  • NINDS NIH HHS - R01 NS069229()

The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes.

  • Serroukh Y
  • Elife
  • 2018 Feb 28

Literature context: y cell line ATCC Cat# CRL-1573, RRID:CVCL_0045 Cell line (human) HEL 299 ATCC


Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.

Funding information:
  • Belgian Federal Public Planning Service Science Policy - Research Project Grant()
  • European Regional Development Fund and Walloon Region - Research Project Grant (411132-957270)()
  • Fonds De La Recherche Scientifique - FNRS - PhD Student Fellowship()
  • Fonds De La Recherche Scientifique - FNRS - Research Project Grant (PDR)()
  • Fonds Erasme - PhD Student Fellowship()
  • Wellcome Trust - MC_U105178939(United Kingdom)

GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells.

  • Besprozvannaya M
  • Elife
  • 2018 Feb 22

Literature context: l line E. J. Dickson collection RRID:CVCL_0045 Fiji (ImageJ) software Software


Endoplasmic reticulum (ER) membrane contact sites (MCSs) are crucial regulatory hubs in cells, playing roles in signaling, organelle dynamics, and ion and lipid homeostasis. Previous work demonstrated that the highly conserved yeast Ltc/Lam sterol transporters localize and function at ER MCSs. Our analysis of the human family members, GRAMD1a and GRAMD2a, demonstrates that they are ER-PM MCS proteins, which mark separate regions of the plasma membrane (PM) and perform distinct functions in vivo. GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner and pre-marks the subset of PI(4,5)P2-enriched ER-PM MCSs utilized for STIM1 recruitment. Data from an analysis of cells lacking GRAMD2a suggest that it is an organizer of ER-PM MCSs with pleiotropic functions including calcium homeostasis. Thus, our data demonstrate the existence of multiple ER-PM domains in human cells that are functionally specialized by GRAM-domain containing proteins.

Funding information:
  • National Institute of General Medical Sciences - R01GM062942()
  • National Institute of General Medical Sciences - R01GM097432()
  • National Institutes of Health - F32GM117689()
  • NCI NIH HHS - U54CA151880(United States)

Excitatory Pathways from the Lateral Habenula Enable Propofol-Induced Sedation.

  • Gelegen C
  • Curr. Biol.
  • 2018 Feb 19

Literature context: 3 cells Sigma-Aldrich 85120602; RRID:CVCL_0045 Experimental Models: Organisms/


The lateral habenula has been widely studied for its contribution in generating reward-related behaviors [1, 2]. We have found that this nucleus plays an unexpected role in the sedative actions of the general anesthetic propofol. The lateral habenula is a glutamatergic, excitatory hub that projects to multiple targets throughout the brain, including GABAergic and aminergic nuclei that control arousal [3-5]. When glutamate release from the lateral habenula in mice was genetically blocked, the ability of propofol to induce sedation was greatly diminished. In addition to this reduced sensitivity to propofol, blocking output from the lateral habenula caused natural non-rapid eye movement (NREM) sleep to become highly fragmented, especially during the rest ("lights on") period. This fragmentation was largely reversed by the dual orexinergic antagonist almorexant. We conclude that the glutamatergic output from the lateral habenula is permissive for the sedative actions of propofol and is also necessary for the consolidation of natural sleep.

Funding information:
  • National Institute of General Medical Sciences - Gradaute Student Fellowship(United States)

Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease.

  • Chella Krishnan K
  • Cell Syst
  • 2018 Jan 24

Literature context: : RRID:CVCL_0045 Experimental Models: Organisms/


The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues. We then used gene network modeling to predict candidate regulatory genes of these NAFLD processes, including Fasn, Thrsp, Pklr, and Chchd6. In vivo knockdown experiments of the candidate genes improved both steatosis and insulin resistance. Further in vitro testing demonstrated that downregulation of both Pklr and Chchd6 lowered mitochondrial respiration and led to a shift toward glycolytic metabolism, thus highlighting mitochondria dysfunction as a key mechanistic driver of NAFLD.

Funding information:
  • Cancer Research UK - 12008(United Kingdom)
  • NCATS NIH HHS - UL1 TR001881()
  • NCRR NIH HHS - S10 RR026744()
  • NHLBI NIH HHS - P01 HL028481()
  • NHLBI NIH HHS - T32 HL007895()
  • NHLBI NIH HHS - T32 HL069766()
  • NIDDK NIH HHS - R01 DK104363()

An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4.

  • van Battum EY
  • J. Neurosci.
  • 2018 Jan 17

Literature context:


During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.

Funding information:
  • NCI NIH HHS - R01 CA112054(United States)

Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis.

  • Zhu Z
  • J. Neurochem.
  • 2018 Jan 2

Literature context: ssas, VA, USA). HEK 293T cells (RRID:CVCL_0045) were obtained from the Type Cu


Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment.

Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling.

  • Moehring F
  • Elife
  • 2018 Jan 16

Literature context: cell line) HEK-293 cells ATCC® RRID:CVCL_0045


The first point of our body's contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.

Funding information:
  • Medical College of Wisconsin - Advancing a Healthier Wisconsin Endowment()
  • NIGMS NIH HHS - GM59803(United States)
  • NINDS NIH HHS - NS040538()
  • NINDS NIH HHS - NS070711()
  • NINDS NIH HHS - R01 NS040538()
  • NINDS NIH HHS - R01 NS070711()

NECAPs are negative regulators of the AP2 clathrin adaptor complex.

  • Beacham GM
  • Elife
  • 2018 Jan 18

Literature context: sapiens, female) HEK293 ATCC RRID:CVCL_0045


Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2.

Funding information:
  • National Science Foundation - Graduate Research Fellowship DGE-1650441()
  • NIAID NIH HHS - AI082673(United States)
  • NIGMS NIH HHS - T32 GM007273()
  • NIH HHS - S10 OD018516()
  • NIH HHS - Training Grant GM007273-43()

USP7-Specific Inhibitors Target and Modify the Enzyme's Active Site via Distinct Chemical Mechanisms.

  • Pozhidaeva A
  • Cell Chem Biol
  • 2017 Dec 21

Literature context: TIB-152â„¢Human: HEK293TATCCCat# CRL-1573â„¢Human: colorectal cancer HCT116


USP7 is a deubiquitinating enzyme that plays a pivotal role in multiple oncogenic pathways and therefore is a desirable target for new anti-cancer therapies. However, the lack of structural information about the USP7-inhibitor interactions has been a critical gap in the development of potent inhibitors. USP7 is unique among USPs in that its active site is catalytically incompetent, and is postulated to rearrange into a productive conformation only upon binding to ubiquitin. Surprisingly, we found that ubiquitin alone does not induce an active conformation in solution. Using a combination of nuclear magnetic resonance, mass spectrometry, computational modeling, and cell-based assays, we found that DUB inhibitors P22077 and P50429 covalently modify the catalytic cysteine of USP7 and induce a conformational switch in the enzyme associated with active site rearrangement. This work represents the first experimental insights into USP7 activation and inhibition and provides a structural basis for rational development of potent anti-cancer therapeutics.

Funding information:
  • NHLBI NIH HHS - F30 HL095280(United States)

An Alkynyl-Fucose Halts Hepatoma Cell Migration and Invasion by Inhibiting GDP-Fucose-Synthesizing Enzyme FX, TSTA3.

  • Kizuka Y
  • Cell Chem Biol
  • 2017 Dec 21

Literature context: izuka et al., 2015)N/AHEK293ATCCCRL-1573HEK293S GnT-I-(Reeves et al., 20


Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.

Funding information:
  • NIGMS NIH HHS - GM068763(United States)

Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines.

  • Blattmann P
  • Cell Syst
  • 2017 Dec 27

Literature context: HEK293 ATCC ATCC Cat#CRL-1573; RRID:CVCL_0045 HeLa Kyoto Pepperkok lab, EMBL


In individuals, heterogeneous drug-response phenotypes result from a complex interplay of dose, drug specificity, genetic background, and environmental factors, thus challenging our understanding of the underlying processes and optimal use of drugs in the clinical setting. Here, we use mass-spectrometry-based quantification of molecular response phenotypes and logic modeling to explain drug-response differences in a panel of cell lines. We apply this approach to cellular cholesterol regulation, a biological process with high clinical relevance. From the quantified molecular phenotypes elicited by various targeted pharmacologic or genetic treatments, we generated cell-line-specific models that quantified the processes beneath the idiotypic intracellular drug responses. The models revealed that, in addition to drug uptake and metabolism, further cellular processes displayed significant pharmacodynamic response variability between the cell lines, resulting in cell-line-specific drug-response phenotypes. This study demonstrates the importance of integrating different types of quantitative systems-level molecular measurements with modeling to understand the effect of pharmacological perturbations on complex biological processes.

Funding information:
  • NCI NIH HHS - 5 P30 CA46592(United States)

A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency.

  • Fouquet B
  • Elife
  • 2017 Dec 12

Literature context: HEK293 cells (RRID:CVCL_0045) were transfected with 20 nmol/


Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation.

Funding information:
  • NIGMS NIH HHS - GM025232(United States)

Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence.

  • Chandra R
  • Neuron
  • 2017 Dec 20

Literature context: 02; RRID:CVCL_0045 Experimental Models: Organisms/


Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.

Funding information:
  • NCI NIH HHS - R01 CA140198(United States)
  • NIAAA NIH HHS - R01 AA024845()
  • NIDA NIH HHS - R01 DA037257()
  • NIDA NIH HHS - R01 DA038613()
  • NIGMS NIH HHS - R25 GM055036()
  • NIGMS NIH HHS - SC2 GM109811()

A Method for the Acute and Rapid Degradation of Endogenous Proteins.

  • Clift D
  • Cell
  • 2017 Dec 14

Literature context: man: HEK293T ATCC Cat#CRL-1573; RRID:CVCL_0045 Human: HEK293T-mCherry-hTRIM21


Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.

Funding information:
  • NIDCD NIH HHS - P30 DC04657(United States)

Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination.

  • Seemann E
  • Elife
  • 2017 Dec 5

Literature context: HEK293 Cell Lines Services GmbH RRID:CVCL_0045


Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat proteins caveolin3 and cavin1 were both not reduced upon syndapin III KO. This allowed for dissecting bona fide caveolar functions from those supported by mere caveolin presence and also demonstrated that neither caveolin3 nor caveolin3 and cavin1 are sufficient to form caveolae. The membrane-shaping protein syndapin III is crucial for caveolar invagination and KO rendered the cells sensitive to membrane tensions. Consistent with this physiological role of caveolae in counterpoising membrane tensions, syndapin III KO skeletal muscles showed pathological parameters upon physical exercise that are also found in CAVEOLIN3 mutation-associated muscle diseases.

Funding information:
  • NHLBI NIH HHS - HL095590(United States)

Sculpting ion channel functional expression with engineered ubiquitin ligases.

  • Kanner SA
  • Elife
  • 2017 Dec 19

Literature context: cell line (human) HEK293 other RRID:CVCL_0045 Laboratory of Robert Kass


The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels.

Funding information:
  • NCI NIH HHS - P30 CA013696()
  • NCRR NIH HHS - S10 RR027050()
  • NEI NIH HHS - (R01EY021716(United States)
  • NHLBI NIH HHS - R01 HL121253()
  • NHLBI NIH HHS - R01 HL122421()
  • NIGMS NIH HHS - T32 GM007367()

A Population Representation of Absolute Light Intensity in the Mammalian Retina.

  • Milner ES
  • Cell
  • 2017 Nov 2

Literature context: dels: Cell LinesHEK293 CellsATCCCRL-1573Experimental Models: Organisms/S


Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.

Heterodimeric capping protein is required for stereocilia length and width regulation.

  • Avenarius MR
  • J. Cell Biol.
  • 2017 Nov 6

Literature context: s expressed using HEK293 cells (RRID:CVCL_0045), which were maintained in DMEM


Control of the dimensions of actin-rich processes like filopodia, lamellipodia, microvilli, and stereocilia requires the coordinated activity of many proteins. Each of these actin structures relies on heterodimeric capping protein (CAPZ), which blocks actin polymerization at barbed ends. Because dimension control of the inner ear's stereocilia is particularly precise, we studied the CAPZB subunit in hair cells. CAPZB, present at ∼100 copies per stereocilium, concentrated at stereocilia tips as hair cell development progressed, similar to the CAPZB-interacting protein TWF2. We deleted Capzb specifically in hair cells using Atoh1-Cre, which eliminated auditory and vestibular function. Capzb-null stereocilia initially developed normally but later shortened and disappeared; surprisingly, stereocilia width decreased concomitantly with length. CAPZB2 expressed by in utero electroporation prevented normal elongation of vestibular stereocilia and irregularly widened them. Together, these results suggest that capping protein participates in stereocilia widening by preventing newly elongating actin filaments from depolymerizing.

Functional properties of dopamine transporter oligomers after copper linking.

  • Zhen J
  • J. Neurochem.
  • 2017 Nov 24

Literature context: sed in this manuscript, HEK293 (RRID:CVCL_0045), is listed as a commonly misid


Although it is universally accepted that dopamine transporters (DATs) exist in monomers, dimers and tetramers (i.e. dimers of dimers), it is not known whether the oligomeric organization of DAT is a prerequisite for its ability to take up dopamine (DA), or whether each DAT protomer, the subunit of quaternary structure, functions independently in terms of DA translocation. In this study, copper phenanthroline (CuP) was used to selectively target surface DAT: increasing concentrations of CuP gradually cross-linked natural DAT dimers in LLC-PK1 cells stably expressing hDAT and thereby reduced DA uptake functionality until all surface DATs were inactivated. DATs that were not cross-linked by CuP showed normal DA uptake with DA Km at ~ 0.5 μM and DA efflux with basal and amphetamine-induced DA efflux as much as control values. The cocaine analog 2β-carbomethoxy-3β-[4-fluorophenyl]-tropane (CFT) was capable to bind to copper-cross-linked DATs, albeit with an affinity more than fivefold decreased (Kd of CFT = 109 nM after cross-linking vs 19 nM before). A kinetic analysis is offered describing the changing amounts of dimers and monomers with increasing [CuP], allowing the estimation of dimer functional activity compared with a DAT monomer. Consonant with previous conclusions for serotonin transporter and NET that only one protomer of an oligomer is active at the time, the present data indicated a functional activity of the DAT dimer of 0.74 relative to a monomer.

Boron-Based Inhibitors of the NLRP3 Inflammasome.

  • Baldwin AG
  • Cell Chem Biol
  • 2017 Nov 16

Literature context: ab UoMHepG2ATCCHB-8065HEK293ATCCCRL-1573Experimental Models: Organisms/S


NLRP3 is a receptor important for host responses to infection, yet is also known to contribute to devastating diseases such as Alzheimer's disease, diabetes, atherosclerosis, and others, making inhibitors for NLRP3 sought after. One of the inhibitors currently in use is 2-aminoethoxy diphenylborinate (2APB). Unfortunately, in addition to inhibiting NLRP3, 2APB also displays non-selective effects on cellular Ca2+ homeostasis. Here, we use 2APB as a chemical scaffold to build a series of inhibitors, the NBC series, which inhibit the NLRP3 inflammasome in vitro and in vivo without affecting Ca2+ homeostasis. The core chemical insight of this work is that the oxazaborine ring is a critical feature of the NBC series, and the main biological insight the use of NBC inhibitors led to was that NLRP3 inflammasome activation was independent of Ca2+. The NBC compounds represent useful tools to dissect NLRP3 function, and may lead to oxazaborine ring-containing therapeutics.

The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A.

  • Sepp M
  • J. Neurosci.
  • 2017 Oct 25

Literature context: Human embryonic kidney HEK-293 (RRID:CVCL_0045) and HEK-293FT (RRID:CVCL_6911)


Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.

Funding information:
  • NIMH NIH HHS - R01 MH110487()
  • NIMH NIH HHS - R56 MH104593()

Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems.

  • Suzuki Y
  • PLoS ONE
  • 2017 Oct 19

Literature context: JCRB) Cell Bank (Osaka, Japan). HEK293 and QGP-1 cells were maintained


Two-pore-domain K+ (K2P) channels sense a wide variety of stimuli such as mechanical stress, inhalational anesthetics, and changes in extracellular pH or temperature. The K2P channel activity forms a background K+ current and, thereby, contributes to resting membrane potentials. Six subfamilies including fifteen subtypes of K2P channels have been identified. Each K2P channel molecule with two pores consists of a homodimer of each subtype. In addition, a few heterodimers mainly within the same subfamilies have been found recently. In the present study, the possibility of heterodimerization between TASK1 (TWIK-Related Acid-Sensitive K+ channel) and TALK2 (TWIK-Related Alkaline pH-Activated K+ channel) was examined. These channels belong to separate subfamilies and show extremely different channel properties. Surprisingly, single molecular imaging analyses in this study using a total internal reflection microscope suggested the heterodimerization of TASK1 and TALK2 in a pancreatic cell line, QGP-1. This heterodimer was also detected using a bimolecular fluorescence complementation assay in a HEK293 heterologous expression system. Fluorescence resonance energy transfer analyses showed that the affinity between TASK1 and TALK2 appeared to be close to those of homodimers. Whole-cell patch-clamp recordings revealed that TASK1 currents in HEK293 cells were significantly attenuated by co-expression of a dominant-negative form of TALK2 in comparison with that of wild-type TALK2. The sensitivities of TASK1-TALK2 tandem constructs to extracellular pH and halothane were characterized as a unique hybrid of TASK1 and TALK2. These results suggested that heterodimerization of TASK1 and TALK2 provides cells with the ability to make multiple responses to a variety of physiological and pharmacological stimuli.

Funding information:
  • NIMH NIH HHS - R01 MH101130(United States)

Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions.

  • Dalin MG
  • Nat Commun
  • 2017 Oct 30

Literature context: % fetal bovine serum (FBS). The HEK-293 cell line (ATCC, Manassas, VA,


Myoepithelial carcinoma (MECA) is an aggressive salivary gland cancer with largely unknown genetic features. Here we comprehensively analyze molecular alterations in 40 MECAs using integrated genomic analyses. We identify a low mutational load, and high prevalence (70%) of oncogenic gene fusions. Most fusions involve the PLAG1 oncogene, which is associated with PLAG1 overexpression. We find FGFR1-PLAG1 in seven (18%) cases, and the novel TGFBR3-PLAG1 fusion in six (15%) cases. TGFBR3-PLAG1 promotes a tumorigenic phenotype in vitro, and is absent in 723 other salivary gland tumors. Other novel PLAG1 fusions include ND4-PLAG1; a fusion between mitochondrial and nuclear DNA. We also identify higher number of copy number alterations as a risk factor for recurrence, independent of tumor stage at diagnosis. Our findings indicate that MECA is a fusion-driven disease, nominate TGFBR3-PLAG1 as a hallmark of MECA, and provide a framework for future diagnostic and therapeutic research in this lethal cancer.

Funding information:
  • NCI NIH HHS - P30 CA008748()
  • NIDCR NIH HHS - K08 DE024774()
  • NIMH NIH HHS - R15 MH099590(United States)

The ESRP1-GPR137 axis contributes to intestinal pathogenesis.

  • Mager LF
  • Elife
  • 2017 Oct 4

Literature context: iency (Promega). HEK-293 cells (RRID:CVCL_0045) were transiently transfected b


Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.

Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation.

  • Farhy-Tselnicker I
  • Neuron
  • 2017 Oct 11

Literature context: 3 cell line ATCC CAT# CRL-1573; RRID:CVCL_0045 HEK293T cell line ATCC CAT# CRL


The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the AMPA receptor clustering factor neuronal pentraxin 1 from presynaptic terminals by signaling through presynaptic protein tyrosine phosphatase receptor δ. Pentraxin then accumulates AMPA receptors on the postsynaptic terminal forming functional synapses. Our findings reveal a signaling pathway that regulates synaptic activity during central nervous system development and demonstrates a role for astrocytes as organizers of active synaptic connections by coordinating both pre and post synaptic neurons. As mutations in glypicans are associated with neurological disorders, such as autism and schizophrenia, this signaling cascade offers new avenues to modulate synaptic function in disease.

Funding information:
  • NINDS NIH HHS - R01 NS089791()
  • Wellcome Trust - P30 NS072031()

Patient-specific mutations impair BESTROPHIN1's essential role in mediating Ca2+-dependent Cl- currents in human RPE.

  • Li Y
  • Elife
  • 2017 Oct 24

Literature context: cell line (human) HEK293 other RRID:CVCL_0045 Laboratory of


Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca2+-dependent Cl- current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based 'disease-in-a-dish' approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.

Funding information:
  • NEI NIH HHS - R00 EY025290()
  • NIGMS NIH HHS - P41 GM103403()

Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos.

  • Holzer G
  • Elife
  • 2017 Oct 30

Literature context: dney 293 cells (ATCC:CRL_11268, RRID:CVCL_0045) (Iwema et al., 2007; Gutierrez


Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore's ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors.

Widespread Post-transcriptional Attenuation of Genomic Copy-Number Variation in Cancer.

  • Gonçalves E
  • Cell Syst
  • 2017 Oct 25

Literature context: rds Cat.# CRL-1573; RRID:CVCL_0045 Recombinant DNA


Copy-number variations (CNVs) are ubiquitous in cancer and often act as driver events, but the effects of CNVs on the proteome of tumors are poorly understood. Here, we analyze recently published genomics, transcriptomics, and proteomics datasets made available by CPTAC and TCGA consortia on 282 breast, ovarian, and colorectal tumor samples to investigate the impact of CNVs in the proteomes of these cells. We found that CNVs are buffered by post-transcriptional regulation in 23%-33% of proteins that are significantly enriched in protein complex members. Our analyses show that complex subunits are highly co-regulated, and some act as rate-limiting steps of complex assembly, as their depletion induces decreased abundance of other complex members. We identified 48 such rate-limiting interactions and experimentally confirmed our predictions on the interactions of AP3B1 with AP3M1 and GTF2E2 with GTF2E1. This study highlights the importance of post-transcriptional mechanisms in cancer that allow cells to cope with their altered genomes.

Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.

  • Quarta C
  • Cell Metab.
  • 2017 Oct 3

Literature context: Human: HEK293 cellsATCCCat. No. CRL-1573Experimental Models: Organisms/S


Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.

Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy.

  • Nash LA
  • Sci Rep
  • 2017 Oct 24

Literature context: or SMA.Go to:MethodsCell culture29384,85, A549 (ATCC CCL 18586, and


Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein. We observed enhanced quantities of exosomes in the medium from SMN-depleted cells, and in serum from a mouse model of SMA and a patient with Type 3 SMA, suggesting that SMN-depletion causes a deregulation of exosome release or uptake. The quantity of SMN protein contained in the serum-derived exosomes correlated with the genotype of the animal, with progressively less protein in carrier and affected animals compared to wildtype mice. SMN protein was easily detectable in exosomes isolated from human serum, with a reduction in the amount of SMN protein in exosomes from a patient with Type 3 SMA compared to a normal control. Our results suggest that exosome-derived SMN protein may serve as an effective biomarker for SMA.

Phospho-Regulation of Soma-to-Axon Transcytosis of Neurotrophin Receptors.

  • Yamashita N
  • Dev. Cell
  • 2017 Sep 25

Literature context: al Models: Cell LinesHEK 293ATCCCRL-1573Experimental Models: Organisms/S


Axonal targeting of signaling receptors is essential for neuronal responses to extracellular cues. Here, we report that retrograde signaling by target-derived nerve growth factor (NGF) is necessary for soma-to-axon transcytosis of TrkA receptors in sympathetic neurons, and we define the molecular underpinnings of this positive feedback regulation that enhances neuronal sensitivity to trophic factors. Activated TrkA receptors are retrogradely transported in signaling endosomes from distal axons to cell bodies, where they are inserted on soma surfaces and promote phosphorylation of resident naive receptors, resulting in their internalization. Endocytosed TrkA receptors are then dephosphorylated by PTP1B, an ER-resident protein tyrosine phosphatase, prior to axonal transport. PTP1B inactivation prevents TrkA exit from soma and causes receptor degradation, suggesting a "gatekeeper" mechanism that ensures targeting of inactive receptors to axons to engage with ligand. In mice, PTP1B deletion reduces axonal TrkA levels and attenuates neuron survival and target innervation under limiting NGF (NGF+/-) conditions.

Funding information:
  • NCI NIH HHS - R01 CA069202()
  • NIDDK NIH HHS - R01 DK108267()
  • NINDS NIH HHS - R01 NS073751()

Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP.

  • Pawellek A
  • Elife
  • 2017 Sep 8

Literature context: HeLa (RRID:CVCL_0030), HEK293 (RRID:CVCL_0045) and NB4 (RRID:CVCL_0005) cells


We have identified the plant biflavonoid hinokiflavone as an inhibitor of splicing in vitro and modulator of alternative splicing in cells. Chemical synthesis confirms hinokiflavone is the active molecule. Hinokiflavone inhibits splicing in vitro by blocking spliceosome assembly, preventing formation of the B complex. Cells treated with hinokiflavone show altered subnuclear organization specifically of splicing factors required for A complex formation, which relocalize together with SUMO1 and SUMO2 into enlarged nuclear speckles containing polyadenylated RNA. Hinokiflavone increases protein SUMOylation levels, both in in vitro splicing reactions and in cells. Hinokiflavone also inhibited a purified, E. coli expressed SUMO protease, SENP1, in vitro, indicating the increase in SUMOylated proteins results primarily from inhibition of de-SUMOylation. Using a quantitative proteomics assay we identified many SUMO2 sites whose levels increased in cells following hinokiflavone treatment, with the major targets including six proteins that are components of the U2 snRNP and required for A complex formation.

Funding information:
  • Medical Research Council - G0400132(United Kingdom)

Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins.

  • Yoon KJ
  • Cell Stem Cell
  • 2017 Sep 7

Literature context: HEK293 ATCC CRL-1573, RRID:CVCL_0045 C12 (iPSC from normal human for


Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain.

Novel luciferase-opsin combinations for improved luminopsins.

  • Park SY
  • J. Neurosci. Res.
  • 2017 Sep 1

Literature context: nic kidney fibroblasts (HEK293, RRID:CVCL_0045; and HEK293FT, RRID:CVCL_6911)


Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin-1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4. We found efficient activation of these channelrhodopsins in the presence of the luciferase substrate, as indicated by responses measured in both single neurons and in neuronal populations of mice and rats, as well as by changes in male rat behavior during amphetamine-induced rotations. We conclude that these new luminopsins will be useful for bimodal opto- and chemogenetic analyses of brain function.

Delta-Secretase Phosphorylation by SRPK2 Enhances Its Enzymatic Activity, Provoking Pathogenesis in Alzheimer's Disease.

  • Wang ZH
  • Mol. Cell
  • 2017 Sep 7

Literature context: els: Cell LinesHuman: HEK293ATCCCRL-1573Human: HeLaATCCCCL-2Human: SH-SY


Delta-secretase, a lysosomal asparagine endopeptidase (AEP), simultaneously cleaves both APP and tau, controlling the onset of pathogenesis of Alzheimer's disease (AD). However, how this protease is post-translationally regulated remains unclear. Here we report that serine-arginine protein kinase 2 (SRPK2) phosphorylates delta-secretase and enhances its enzymatic activity. SRPK2 phosphorylates serine 226 on delta-secretase and accelerates its autocatalytic cleavage, leading to its cytoplasmic translocation and escalated enzymatic activities. Delta-secretase is highly phosphorylated in human AD brains, tightly correlated with SRPK2 activity. Overexpression of a phosphorylation mimetic (S226D) in young 3xTg mice strongly promotes APP and tau fragmentation and facilitates amyloid plaque deposits and neurofibrillary tangle (NFT) formation, resulting in cognitive impairment. Conversely, viral injection of the non-phosphorylatable mutant (S226A) into 5XFAD mice decreases APP and tau proteolytic cleavage, attenuates AD pathologies, and reverses cognitive defects. Our findings support that delta-secretase phosphorylation by SRPK2 plays a critical role in aggravating AD pathogenesis.

Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.

  • Park AJ
  • Elife
  • 2017 Sep 20

Literature context: An aliquot of HEK 293 cells (RRID:CVCL_0045) were gifted from the Snyder la


Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.

Funding information:
  • NICHD NIH HHS - T32HD007183(United States)
  • NIDA NIH HHS - P50 DA000266()
  • NIMH NIH HHS - R01 MH087463()

cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation.

  • Hwang HW
  • Neuron
  • 2017 Sep 13

Literature context: l., 2006N/AHuman: HEK293ATCCCat#CRL-1573Experimental Models: Organisms/S


Alternative polyadenylation (APA) is increasingly recognized to regulate gene expression across different cell types, but obtaining APA maps from individual cell types typically requires prior purification, a stressful procedure that can itself alter cellular states. Here, we describe a new platform, cTag-PAPERCLIP, that generates APA profiles from single cell populations in intact tissues; cTag-PAPERCLIP requires no tissue dissociation and preserves transcripts in native states. Applying cTag-PAPERCLIP to profile four major cell types in the mouse brain revealed common APA preferences between excitatory and inhibitory neurons distinct from astrocytes and microglia, regulated in part by neuron-specific RNA-binding proteins NOVA2 and PTBP2. We further identified a role of APA in switching Araf protein isoforms during microglia activation, impacting production of downstream inflammatory cytokines. Our results demonstrate the broad applicability of cTag-PAPERCLIP and a previously undiscovered role of APA in contributing to protein diversity between different cell types and cellular states within the brain.

Funding information:
  • NHGRI NIH HHS - UM1 HG008901()
  • NINDS NIH HHS - R01 NS034389()
  • NINDS NIH HHS - R01 NS081706()
  • NINDS NIH HHS - R35 NS097404()
  • NINDS NIH HHS - R56 NS034389()

Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy.

  • Zhang Y
  • Cancer Cell
  • 2017 Sep 11

Literature context: HEK 293 cells ATCC CRL-1573; RRID:CVCL_0045 293T cells ATCC CRL-3216; RRID:


How tumor-infiltrating T lymphocytes (TILs) adapt to the metabolic constrains within the tumor microenvironment (TME) and to what degree this affects their ability to combat tumor progression remain poorly understood. Using mouse melanoma models, we report that CD8+ TILs enhance peroxisome proliferator-activated receptor (PPAR)-α signaling and catabolism of fatty acids (FAs) when simultaneously subjected to hypoglycemia and hypoxia. This metabolic switch partially preserves CD8+ TILs' effector functions, although co-inhibitor expression increases during tumor progression regardless of CD8+ TILs' antigen specificity. Further promoting FA catabolism improves the CD8+ TILs' ability to slow tumor progression. PD-1 blockade delays tumor growth without changing TIL metabolism or functions. It synergizes with metabolic reprogramming of T cells to achieve superior antitumor efficacy and even complete cures.

Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism.

  • Liao W
  • Sci Rep
  • 2017 Aug 21

Literature context: 93HEK (RRID:CVCL_0045), human cervical cancer Hela ce


TAp63, a member of the p53 family, has been shown to regulate energy metabolism. Here, we report coiled coil domain-containing 3 (CCDC3) as a new TAp63 target. TAp63, but not ΔNp63, p53 or p73, upregulates CCDC3 expression by directly binding to its enhancer region. The CCDC3 expression is markedly reduced in TAp63-null mouse embryonic fibroblasts and brown adipose tissues and by tumor necrosis factor alpha that reduces p63 transcriptional activity, but induced by metformin, an anti-diabetic drug that activates p63. Also, the expression of CCDC3 is positively correlated with TAp63 levels, but conversely with ΔNp63 levels, during adipocyte differentiation. Interestingly, CCDC3, as a secreted protein, targets liver cancer cells and increases long chain polyunsaturated fatty acids, but decreases ceramide in the cells. CCDC3 alleviates glucose intolerance, insulin resistance and steatosis formation in transgenic CCDC3 mice on high-fat diet (HFD) by reducing the expression of hepatic PPARγ and its target gene CIDEA as well as other genes involved in de novo lipogenesis. Similar results are reproduced by hepatic expression of ectopic CCDC3 in mice on HFD. Altogether, these results demonstrate that CCDC3 modulates liver lipid metabolism by inhibiting liver de novo lipogenesis as a downstream player of the p63 network.

A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45.

  • Courtney AH
  • Mol. Cell
  • 2017 Aug 3

Literature context: odels: Cell LinesHEK293ATCCCat# CRL-1573JurkatWeiss Lab (UCSF)N/AJ.LckTh


The Src Family kinase Lck sets a critical threshold for T cell activation because it phosphorylates the TCR complex and the Zap70 kinase. How a T cell controls the abundance of active Lck molecules remains poorly understood. We have identified an unappreciated role for a phosphosite, Y192, within the Lck SH2 domain that profoundly affects the amount of active Lck in cells. Notably, mutation of Y192 blocks critical TCR-proximal signaling events and impairs thymocyte development in retrogenic mice. We determined that these defects are caused by hyperphosphorylation of the inhibitory C-terminal tail of Lck. Our findings reveal that modification of Y192 inhibits the ability of CD45 to associate with Lck in cells and dephosphorylate the C-terminal tail of Lck, which prevents its adoption of an active open conformation. These results suggest a negative feedback loop that responds to signaling events that tune active Lck amounts and TCR sensitivity.

Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells.

  • Seidel L
  • Elife
  • 2017 Aug 3

Literature context: ines HEK293 (Cat# ACC-305, RRID:CVCL_0045) and 293T (Cat# ACC-635, RRID:C


The activation mechanism of class B G-protein-coupled receptors (GPCRs) remains largely unknown. To characterize conformational changes induced by peptide hormones, we investigated interactions of the class B corticotropin-releasing factor receptor type 1 (CRF1R) with two peptide agonists and three peptide antagonists obtained by N-truncation of the agonists. Surface mapping with genetically encoded photo-crosslinkers and pair-wise crosslinking revealed distinct footprints of agonists and antagonists on the transmembrane domain (TMD) of CRF1R and identified numerous ligand-receptor contact sites, directly from the intact receptor in live human cells. The data enabled generating atomistic models of CRF- and CRF(12-41)-bound CRF1R, further explored by molecular dynamics simulations. We show that bound agonist and antagonist adopt different folds and stabilize distinct TMD conformations, which involves bending of helices VI and VII around flexible glycine hinges. Conservation of these glycine hinges among all class B GPCRs suggests their general role in activation of these receptors.

Funding information:
  • NIGMS NIH HHS - U54 GM094618()

Inhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits.

  • Badheka D
  • Elife
  • 2017 Aug 15

Literature context: A, (catalogue number CRL-1573), RRID:CVCL_0045; cell identity was verified by


Transient receptor potential melastatin 3 (TRPM3) channels are activated by heat, and chemical ligands such as pregnenolone sulphate (PregS) and CIM0216. Here, we show that activation of receptors coupled to heterotrimeric Gi/o proteins inhibits TRPM3 channels. This inhibition was alleviated by co-expression of proteins that bind the βγ subunits of heterotrimeric G-proteins (Gβγ). Co-expression of Gβγ, but not constitutively active Gαi or Gαo, inhibited TRPM3 currents. TRPM3 co-immunoprecipitated with Gβ, and purified Gβγ proteins applied to excised inside-out patches inhibited TRPM3 currents, indicating a direct effect. Baclofen and somatostatin, agonists of Gi-coupled receptors, inhibited Ca2+ signals induced by PregS and CIM0216 in mouse dorsal root ganglion (DRG) neurons. The GABAB receptor agonist baclofen also inhibited inward currents induced by CIM0216 in DRG neurons, and nocifensive responses elicited by this TRPM3 agonist in mice. Our data uncover a novel signaling mechanism regulating TRPM3 channels.

Funding information:
  • NEI NIH HHS - K12 EY022299(United States)

Structural Basis for Specific Interaction of TGFβ Signaling Regulators SARA/Endofin with HD-PTP.

  • Gahloth D
  • Structure
  • 2017 Jul 5

Literature context: iacl Research, Cambridge. UK.N/AHEK93ATCCCRL-1573Software and AlgorithmsProteOn M


SARA and endofin are endosomal adaptor proteins that drive Smad phosphorylation by ligand-activated transforming growth factor β/bone morphogenetic protein (TGFβ/BMP) receptors. We show in this study that SARA and endofin also recruit the tumor supressor HD-PTP, a master regulator of endosomal sorting and ESCRT-dependent receptor downregulation. High-affinity interactions occur between the SARA/endofin N termini, and the conserved hydrophobic region in the HD-PTP Bro1 domain that binds CHMP4/ESCRT-III. CHMP4 engagement is a universal feature of Bro1 proteins, but SARA/endofin binding is specific to HD-PTP. Crystallographic structures of HD-PTPBro1 in complex with SARA, endofin, and three CHMP4 isoforms revealed that all ligands bind similarly to the conserved site but, critically, only SARA/endofin interact at a neighboring pocket unique to HD-PTP. The structures, together with mutagenesis and binding analysis, explain the high affinity and specific binding of SARA/endofin, and why they compete so effectively with CHMP4. Our data invoke models for how endocytic regulation of TGFβ/BMP signaling is controlled.

Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib.

  • Ross FA
  • Cell Chem Biol
  • 2017 Jul 20

Literature context: : Cell LinesSYFATCCCat# CRL-2459HEK-293ECACCCat# 85120602Flp-Inâ„¢ T-RExâ„¢ 293ThermoFisher S


SU6656, a Src kinase inhibitor, was reported to increase fat oxidation and reduce body weight in mice, with proposed mechanisms involving AMP-activated protein kinase (AMPK) activation via inhibition of phosphorylation of either LKB1 or AMPK by the Src kinase, Fyn. However, we report that AMPK activation by SU6656 is independent of Src kinases or tyrosine phosphorylation of LKB1 or AMPK and is not due to decreased cellular energy status or binding at the ADaM site on AMPK. SU6656 is a potent AMPK inhibitor, yet binding at the catalytic site paradoxically promotes phosphorylation of Thr172 by LKB1. This would enhance phosphorylation of downstream targets provided the lifetime of Thr172 phosphorylation was sufficient to allow dissociation of the inhibitor and subsequent catalysis prior to its dephosphorylation. By contrast, sorafenib, a kinase inhibitor in clinical use, activates AMPK indirectly by inhibiting mitochondrial metabolism and increasing cellular AMP:ADP and/or ADP:ATP ratios.

Type XVII collagen coordinates proliferation in the interfollicular epidermis.

  • Watanabe M
  • Elife
  • 2017 Jul 11

Literature context: 93 Cells (RRID:CVCL_0045, authentic


Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.

LTP and memory impairment caused by extracellular Aβ and Tau oligomers is APP-dependent.

  • Puzzo D
  • Elife
  • 2017 Jul 11

Literature context:


The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oAβ) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oAβ and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oAβ, also oTau can bind to amyloid precursor protein (APP). Moreover, efficient intra-neuronal uptake of oAβ and oTau requires expression of APP. Finally, the toxic effect of both extracellular oAβ and oTau on memory and LTP is dependent upon APP since APP-KO mice were resistant to oAβ- and oTau-induced defects in spatial/associative memory and LTP. Thus, APP might serve as a common therapeutic target against Alzheimer's Disease (AD) and a host of other neurodegenerative diseases characterized by abnormal levels of Aβ and/or Tau.

Funding information:
  • NIA NIH HHS - R01 AG049402()

Structures of PGAM5 Provide Insight into Active Site Plasticity and Multimeric Assembly.

  • Chaikuad A
  • Structure
  • 2017 Jul 5

Literature context: FExperimental Models: Cell LinesHEK293SigmaCat# 85120602Recombinant DNApNIC28-Bsa4 plasm


PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases.

How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells.

  • Shemetov AA
  • Cell Chem Biol
  • 2017 Jun 22

Literature context: CRL-1573; RRID:CVCL_0045 U-87 ATCC


Numerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and miRFP703. We found that among all NIR FPs, miRFP670 had the highest fluorescence intensity in various mammalian cells. For instance, in common HeLa cells miRFP703, mIFP, and smURFP were 2-, 9-, and 53-fold dimmer than miRFP670. Either co-expression of heme oxygenase or incubation of cells with heme precursor weakly affected NIR fluorescence, however, in the latter case elevated cellular autofluorescence. Exogenously added chromophore substantially increased smURFP brightness but only slightly enhanced brightness of other NIR FPs. mIFP showed intermediate, while monomeric miRFP670 and miRFP703 exhibited high binding efficiency of endogenous biliverdin chromophore. This feature makes them easy to use as GFP-like proteins for spectral multiplexing with FPs of visible range.

Funding information:
  • NIGMS NIH HHS - R35 GM122567()
  • NINDS NIH HHS - U01 NS099573()

Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation.

  • Miao Y
  • Elife
  • 2017 May 11

Literature context: CRL-1573)(RRID:CVCL_0045), expanded


T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.

Funding information:
  • NIAID NIH HHS - R01 AI108636()

The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells.

  • Cunningham CL
  • Elife
  • 2017 May 15

Literature context: (HEK293 (RRID:CVCL_0045) or COS-7


Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here, we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt.

CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism.

  • Mascia F
  • J. Neurochem.
  • 2017 May 15

Literature context: idney (HEK293, ATCC® CRL-1573™; RRID:CVCL_0045) cells were cultivated and tran


The excitability of the central nervous system depends largely on the surface density of neurotransmitter receptors. The endocannabinoid receptor 1 (CB1 R) and the metabotropic glutamate receptor mGlu8 R are expressed pre-synaptically where they reduce glutamate release into the synaptic cleft. Recently, the CB1 R interacting protein cannabinoid receptor interacting protein 1a (CRIP1a) was identified and characterized to regulate CB1 R activity in neurons. However, underlying molecular mechanisms are largely unknown. Here, we identified a common mechanism used by CRIP1a to regulate the cell surface density of two different types of G-protein coupled receptors, CB1 R and mGlu8a R. Five amino acids within the CB1 R C-terminus were required and sufficient to reduce constitutive CB1 R endocytosis by about 72% in the presence of CRIP1a. Interestingly, a similar sequence is present in mGlu8a R and consistently, endocytosis of mGlu8a R depended on CRIP1a, as well. Docking analysis and molecular dynamics simulations identified a conserved serine in CB1 R (S468) and mGlu8a R (S894) that forms a hydrogen bond with the peptide backbone of CRIP1a at position R82. In contrast to mGlu8a R, the closely related mGlu8b R splice-variant carries a lysine (K894) at this position, and indeed, mGlu8b R endocytosis was not affected by CRIP1a. Chimeric constructs between CB1 R, mGlu8a R, and mGlu8b R underline the role of the identified five CRIP1a sensitive amino acids. In summary, we suggest that CRIP1a negatively regulates endocytosis of two different G-protein coupled receptor types, CB1 R and mGlu8a R.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells.

  • Diamantopoulou Z
  • Cancer Cell
  • 2017 May 8

Literature context: Authenticated by MBCF of CRUK MIHEK293ECACC (operated by Public Health


Aberrant WNT signaling drives colorectal cancer (CRC). Here, we identify TIAM1 as a critical antagonist of CRC progression through inhibiting TAZ and YAP, effectors of WNT signaling. We demonstrate that TIAM1 shuttles between the cytoplasm and nucleus antagonizing TAZ/YAP by distinct mechanisms in the two compartments. In the cytoplasm, TIAM1 localizes to the destruction complex and promotes TAZ degradation by enhancing its interaction with βTrCP. Nuclear TIAM1 suppresses TAZ/YAP interaction with TEADs, inhibiting expression of TAZ/YAP target genes implicated in epithelial-mesenchymal transition, cell migration, and invasion, and consequently suppresses CRC cell migration and invasion. Importantly, high nuclear TIAM1 in clinical specimens associates with increased CRC patient survival. Together, our findings suggest that in CRC TIAM1 suppresses tumor progression by regulating YAP/TAZ activity.

Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics.

  • Yadav L
  • Cell Syst
  • 2017 Apr 26

Literature context: 247â„¢Human: HEK 293 cell lineATCCCat# ATCC CRL-1573â„¢Recombinant DNAATF2 reporter ve


Coordinated activities of protein kinases and phosphatases ensure phosphorylation homeostasis, which, when perturbed, can instigate diseases, including cancer. Yet, in contrast to kinases, much less is known about protein phosphatase functions and their interactions and complexes. Here, we used quantitative affinity proteomics to assay protein-protein interactions for 54 phosphatases distributed across the three major protein phosphatase families, with additional analysis of their 12 co-factors. We identified 838 high-confidence interactions, of which 631, to our knowledge, have not been reported before. We show that inhibiting the activity of phosphatases PP1 and PP2A by okadaic acid disrupts their specific interactions, supporting the potential of therapeutics that target these proteins. Additional analyses revealed candidate physical and functional interaction links to phosphatase-based regulation of several signaling pathways and to human cancer. Our study provides an initial glimpse of the protein interaction landscape of phosphatases and their functions in cellular regulation.

Funding information:
  • NIMH NIH HHS - R01 MH080420-05(United States)

Ezrin activation by LOK phosphorylation involves a PIP2-dependent wedge mechanism.

  • Pelaseyed T
  • Elife
  • 2017 Apr 21

Literature context: CRL-1573, RRID:CVCL_0045) used for


How cells specify morphologically distinct plasma membrane domains is poorly understood. Prior work has shown that restriction of microvilli to the apical aspect of epithelial cells requires the localized activation of the membrane-F-actin linking protein ezrin. Using an in vitro system, we now define a multi-step process whereby the kinase LOK specifically phosphorylates ezrin to activate it. Binding of PIP2 to ezrin induces a conformational change permitting the insertion of the LOK C-terminal domain to wedge apart the membrane and F-actin-binding domains of ezrin. The N-terminal LOK kinase domain can then access a site 40 residues distal from the consensus sequence that collectively direct phosphorylation of the appropriate threonine residue. We suggest that this elaborate mechanism ensures that ezrin is only phosphorylated at the plasma membrane, and with high specificity by the apically localized kinase LOK.

Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature.

  • Seaman S
  • Cancer Cell
  • 2017 Apr 10

Literature context: CL-61; RRID:CVCL_0045 DLD-1 ATCC


Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.

Funding information:
  • Intramural NIH HHS - ZIA BC010578-13()
  • Intramural NIH HHS - ZIA BC010736-11()

An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells.

  • Lobingier BT
  • Cell
  • 2017 Apr 6

Literature context: Cell LinesHuman HEK293 CellsATCCCRL-1573Recombinant DNApcDNA3.1: FLAG-B2


Cells operate through protein interaction networks organized in space and time. Here, we describe an approach to resolve both dimensions simultaneously by using proximity labeling mediated by engineered ascorbic acid peroxidase (APEX). APEX has been used to capture entire organelle proteomes with high temporal resolution, but its breadth of labeling is generally thought to preclude the higher spatial resolution necessary to interrogate specific protein networks. We provide a solution to this problem by combining quantitative proteomics with a system of spatial references. As proof of principle, we apply this approach to interrogate proteins engaged by G-protein-coupled receptors as they dynamically signal and traffic in response to ligand-induced activation. The method resolves known binding partners, as well as previously unidentified network components. Validating its utility as a discovery pipeline, we establish that two of these proteins promote ubiquitin-linked receptor downregulation after prolonged activation.

Funding information:
  • NCI NIH HHS - R01 CA186568()
  • NIGMS NIH HHS - P50 GM082250()

The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover.

  • Tawo R
  • Cell
  • 2017 Apr 20

Literature context: kidney cells)Sigma-AldrichCat# 85120602HeLa (Epitheloid cervix carcinom


Aging is attended by a progressive decline in protein homeostasis (proteostasis), aggravating the risk for protein aggregation diseases. To understand the coordination between proteome imbalance and longevity, we addressed the mechanistic role of the quality-control ubiquitin ligase CHIP, which is a key regulator of proteostasis. We observed that CHIP deficiency leads to increased levels of the insulin receptor (INSR) and reduced lifespan of worms and flies. The membrane-bound INSR regulates the insulin and IGF1 signaling (IIS) pathway and thereby defines metabolism and aging. INSR is a direct target of CHIP, which triggers receptor monoubiquitylation and endocytic-lysosomal turnover to promote longevity. However, upon proteotoxic stress conditions and during aging, CHIP is recruited toward disposal of misfolded proteins, reducing its capacity to degrade the INSR. Our study indicates a competitive relationship between proteostasis and longevity regulation through CHIP-assisted proteolysis, providing a mechanistic concept for understanding the impact of proteome imbalance on aging.

Myrf ER-Bound Transcription Factors Drive C. elegans Synaptic Plasticity via Cleavage-Dependent Nuclear Translocation.

  • Meng J
  • Dev. Cell
  • 2017 Apr 24

Literature context: al Models: Cell LinesHEK-293ATCCCRL-1573Experimental Models: Organisms/S


Synaptic refinement is a critical step in nervous system maturation, requiring a carefully timed reorganization and refinement of neuronal connections. We have identified myrf-1 and myrf-2, two C. elegans homologs of Myrf family transcription factors, as key regulators of synaptic rewiring. MYRF-1 and its paralog MYRF-2 are functionally redundant specifically in synaptic rewiring. They co-exist in the same protein complex and act cooperatively to regulate synaptic rewiring. We find that the MYRF proteins localize to the ER membrane and that they are cleaved into active N-terminal fragments, which then translocate into the nucleus to drive synaptic rewiring. Overexpression of active forms of MYRF is sufficient to accelerate synaptic rewiring. MYRF-1 and MYRF-2 are the first genes identified to be indispensable for promoting synaptic rewiring in C. elegans. These findings reveal a molecular mechanism underlying synaptic rewiring and developmental circuit plasticity.

Funding information:
  • Howard Hughes Medical Institute - P40 OD010440()
  • NIH HHS - R01 NS035546()

Transcriptional Elongation of HSV Immediate Early Genes by the Super Elongation Complex Drives Lytic Infection and Reactivation from Latency.

  • Alfonso-Dunn R
  • Cell Host Microbe
  • 2017 Apr 12

Literature context: K293; Human Embryonic KidneyATCCCRL-1573VeroATCCCCL-81Experimental Model


The cellular transcriptional coactivator HCF-1 is required for initiation of herpes simplex virus (HSV) lytic infection and for reactivation from latency in sensory neurons. HCF-1 stabilizes the viral Immediate Early (IE) gene enhancer complex and mediates chromatin transitions to promote IE transcription initiation. In infected cells, HCF-1 was also found to be associated with a network of transcription elongation components including the super elongation complex (SEC). IE genes exhibit characteristics of genes controlled by transcriptional elongation, and the SEC-P-TEFb complex is specifically required to drive the levels of productive IE mRNAs. Significantly, compounds that enhance the levels of SEC-P-TEFb also potently stimulated HSV reactivation from latency both in a sensory ganglia model system and in vivo. Thus, transcriptional elongation of HSV IE genes is a key limiting parameter governing both the initiation of HSV infection and reactivation of latent genomes.

Funding information:
  • NIGMS NIH HHS - R01 GM114141()

GARLH Family Proteins Stabilize GABAA Receptors at Synapses.

  • Yamasaki T
  • Neuron
  • 2017 Mar 8

Literature context: tal Models: Cell LinesHEK293ATCCCat#: CRL-1573293FTLife TechnologiesCat#: R700


Ionotropic neurotransmitter receptors mediate fast synaptic transmission by functioning as ligand-gated ion channels. Fast inhibitory transmission in the brain is mediated mostly by ionotropic GABAA receptors (GABAARs), but their essential components for synaptic localization remain unknown. Here, we identify putative auxiliary subunits of GABAARs, which we term GARLHs, consisting of LH4 and LH3 proteins. LH4 forms a stable tripartite complex with GABAARs and neuroligin-2 in the brain. Moreover, LH4 is required for the synaptic localization of GABAARs and inhibitory synaptic transmission in the hippocampus. Our findings propose GARLHs as the first identified auxiliary subunits for anion channels. These findings provide new insights into the regulation of inhibitory transmission and the molecular constituents of native anion channels in vivo.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIGMS NIH HHS - T32 GM007205()
  • NIMH NIH HHS - F30 MH099742()
  • NIMH NIH HHS - U01 MH104984()
  • NINDS NIH HHS - U24 NS050606()

KChIP2 is a core transcriptional regulator of cardiac excitability.

  • Nassal DM
  • Elife
  • 2017 Mar 6

Literature context: CRL-1573, RRID:CVCL_0045). 0.4 × 10


Arrhythmogenesis from aberrant electrical remodeling is a primary cause of death among patients with heart disease. Amongst a multitude of remodeling events, reduced expression of the ion channel subunit KChIP2 is consistently observed in numerous cardiac pathologies. However, it remains unknown if KChIP2 loss is merely a symptom or involved in disease development. Using rat and human derived cardiomyocytes, we identify a previously unobserved transcriptional capacity for cardiac KChIP2 critical in maintaining electrical stability. Through interaction with genetic elements, KChIP2 transcriptionally repressed the miRNAs miR-34b and miR-34c, which subsequently targeted key depolarizing (INa) and repolarizing (Ito) currents altered in cardiac disease. Genetically maintaining KChIP2 expression or inhibiting miR-34 under pathologic conditions restored channel function and moreover, prevented the incidence of reentrant arrhythmias. This identifies the KChIP2/miR-34 axis as a central regulator in developing electrical dysfunction and reveals miR-34 as a therapeutic target for treating arrhythmogenesis in heart disease.

Funding information:
  • NHLBI NIH HHS - R01 HL096962()
  • NHLBI NIH HHS - R01 HL132520()

Role of the Excitability Brake Potassium Current IKD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

  • González A
  • J. Neurosci.
  • 2017 Mar 22

Literature context: HEK-293 cells (CRL-1573, RRID:CVCL_0045) stably expressing mTRPM8 (HEK-


Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.

Funding information:
  • Intramural NIH HHS - (United States)

p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway.

  • Jeannot P
  • Elife
  • 2017 Mar 13

Literature context: (RRID:CVCL_0045), A-375 (R


p27Kip1 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition. Herein, we find that p27 promotes cell invasion by binding to and regulating the activity of Cortactin, a critical regulator of invadopodia formation. p27 localizes to invadopodia and limits their number and activity. p27 promotes the interaction of Cortactin with PAK1. In turn, PAK1 promotes invadopodia turnover by phosphorylating Cortactin, and expression of Cortactin mutants for PAK-targeted sites abolishes p27's effect on invadopodia dynamics. Thus, in absence of p27, cells exhibit increased invadopodia stability due to impaired PAK1-Cortactin interaction, but their invasive capacity is reduced compared to wild-type cells. Overall, we find that p27 directly promotes cell invasion by facilitating invadopodia turnover via the Rac1/PAK1/Cortactin pathway.

Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

  • Baar MP
  • Cell
  • 2017 Mar 23

Literature context: dt et al., 2002)N/AHEK293LTVATCCCat#CRL-1573IMR90ATCCCat#CCL-186NIH 3T3ATCCC


The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.

Funding information:
  • NIA NIH HHS - P01 AG017242()
  • NIA NIH HHS - R37 AG009909()

Structural basis for potency differences between GDF8 and GDF11.

  • Walker RG
  • BMC Biol.
  • 2017 Mar 3

Literature context: ived from RRID:CVCL_0045) were perf


BACKGROUND: Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. RESULTS: Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. CONCLUSIONS: These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.

Funding information:
  • NCI NIH HHS - R01 CA172886()
  • NIA NIH HHS - R01 AG040019()
  • NIA NIH HHS - R01 AG047131()
  • NIA NIH HHS - R01 AG048917()
  • NIA NIH HHS - R03 AG049657()
  • NIA NIH HHS - R56 AG048917()
  • NIA NIH HHS - R56 AG052979()
  • NIDDK NIH HHS - T32 DK007260()
  • NIGMS NIH HHS - R01 GM058670()
  • NIGMS NIH HHS - R01 GM114640()

The Super Elongation Complex Drives Neural Stem Cell Fate Commitment.

  • Liu K
  • Dev. Cell
  • 2017 Mar 27

Literature context: 0Experimental Models: Cell LinesHEK293ATCCCRL-1573Experimental Models:


Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.

SMOC can act as both an antagonist and an expander of BMP signaling.

  • Thomas JT
  • Elife
  • 2017 Mar 21

Literature context: TCC CRL-1658) and HEK 293 (ATCC CRL-1573) cells were cultured in DMEM me


The matricellular protein SMOC (Secreted Modular Calcium binding protein) is conserved phylogenetically from vertebrates to arthropods. We showed previously that SMOC inhibits bone morphogenetic protein (BMP) signaling downstream of its receptor via activation of mitogen-activated protein kinase (MAPK) signaling. In contrast, the most prominent effect of the Drosophila orthologue, pentagone (pent), is expanding the range of BMP signaling during wing patterning. Using SMOC deletion constructs we found that SMOC-∆EC, lacking the extracellular calcium binding (EC) domain, inhibited BMP2 signaling, whereas SMOC-EC (EC domain only) enhanced BMP2 signaling. The SMOC-EC domain bound HSPGs with a similar affinity to BMP2 and could expand the range of BMP signaling in an in vitro assay by competition for HSPG-binding. Together with data from studies in vivo we propose a model to explain how these two activities contribute to the function of Pent in Drosophila wing development and SMOC in mammalian joint formation.

KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents.

  • Fritzius T
  • J. Neurosci.
  • 2017 Feb 1

Literature context: 93) cells were from ATCC (RRID: CVCL_0045) and maintained in DMEM supplem


GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus. SIGNIFICANCE STATEMENT: The KCTD proteins 8, 12, and 16 are auxiliary subunits of GABAB receptors that differentially regulate G-protein signaling of the receptor. The KCTD proteins are generally assumed to function as homo-oligomers. Here we show that the KCTD proteins also assemble hetero-oligomers in all possible dual combinations. Experiments in live cells demonstrate that KCTD hetero-oligomers form at least tetramers and that these tetramers directly interact with the receptor and the G-protein. KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties to GABAB receptor-induced Kir3 currents in heterologous cells. KCTD12/KCTD16 hetero-oligomers are abundant in the hippocampus, where they prolong the duration of slow IPSCs in pyramidal cells. Our data therefore support that KCTD hetero-oligomers modulate physiologically induced K+ current responses in the brain.

YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB.

  • Schimmack G
  • Elife
  • 2017 Feb 28

Literature context: (RRID:CVCL_0045) and PC3 c


The ubiquitin ligase TRAF6 is a key regulator of canonical IκB kinase (IKK)/NF-κB signaling in response to interleukin-1 (IL-1) stimulation. Here, we identified the deubiquitinating enzyme YOD1 (OTUD2) as a novel interactor of TRAF6 in human cells. YOD1 binds to the C-terminal TRAF homology domain of TRAF6 that also serves as the interaction surface for the adaptor p62/Sequestosome-1, which is required for IL-1 signaling to NF-κB. We show that YOD1 competes with p62 for TRAF6 association and abolishes the sequestration of TRAF6 to cytosolic p62 aggregates by a non-catalytic mechanism. YOD1 associates with TRAF6 in unstimulated cells but is released upon IL-1β stimulation, thereby facilitating TRAF6 auto-ubiquitination as well as NEMO/IKKγ substrate ubiquitination. Further, IL-1 triggered IKK/NF-κB signaling and induction of target genes is decreased by YOD1 overexpression and augmented after YOD1 depletion. Hence, our data define that YOD1 antagonizes TRAF6/p62-dependent IL-1 signaling to NF-κB.

Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification.

  • Hu D
  • Mol. Cell
  • 2017 Feb 2

Literature context: sNovus BiologicalsCat#NBP1-41162HEK293ATCCCat#CRL-1573Puromycin-Resist


The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.

Funding information:
  • NCI NIH HHS - P30 CA060553()
  • NCI NIH HHS - R01 CA101774()
  • NCI NIH HHS - R01 CA214035()
  • NCI NIH HHS - R35 CA197569()
  • NCI NIH HHS - R50 CA211428()
  • NCI NIH HHS - T32 CA080621()

Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways.

  • Li YC
  • Neuron
  • 2017 Feb 8

Literature context: ic kidney-293 (HEK293) cellsATCCCatalog # CRL-1573Experimental Models: Organisms/S


Synaptic vesicle recycling is essential for maintaining normal synaptic function. The coupling of exocytosis and endocytosis is assumed to be Ca2+ dependent, but the exact role of Ca2+ and its key effector synaptotagmin-1 (syt1) in regulation of endocytosis is poorly understood. Here, we probed the role of syt1 in single- as well as multi-vesicle endocytic events using high-resolution optical recordings. Our experiments showed that the slowed endocytosis phenotype previously reported after syt1 loss of function can also be triggered by other manipulations that promote asynchronous release such as Sr2+ substitution and complexin loss of function. The link between asynchronous release and slowed endocytosis was due to selective targeting of fused synaptic vesicles toward slow retrieval by the asynchronous release Ca2+ sensor synaptotagmin-7. In contrast, after single synaptic vesicle fusion, syt1 acted as an essential determinant of synaptic vesicle endocytosis time course by delaying the kinetics of vesicle retrieval in response to increasing Ca2+ levels.

Funding information:
  • NIMH NIH HHS - R01 MH066198()

Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs.

  • Cassier E
  • Elife
  • 2017 Feb 7

Literature context: pe cells (RRID:CVCL_0045) were from


In addition to their role in desensitization and internalization of G protein-coupled receptors (GPCRs), β-arrestins are essential scaffolds linking GPCRs to Erk1/2 signaling. However, their role in GPCR-operated Erk1/2 activation differs between GPCRs and the underlying mechanism remains poorly characterized. Here, we show that activation of serotonin 5-HT2C receptors, which engage Erk1/2 pathway via a β-arrestin-dependent mechanism, promotes MEK-dependent β-arrestin2 phosphorylation at Thr383, a necessary step for Erk recruitment to the receptor/β-arrestin complex and Erk activation. Likewise, Thr383 phosphorylation is involved in β-arrestin-dependent Erk1/2 stimulation elicited by other GPCRs such as β2-adrenergic, FSH and CXCR4 receptors, but does not affect the β-arrestin-independent Erk1/2 activation by 5-HT4 receptor. Collectively, these data show that β-arrestin2 phosphorylation at Thr383 underlies β-arrestin-dependent Erk1/2 activation by GPCRs.

A conformational switch regulates the ubiquitin ligase HUWE1.

  • Sander B
  • Elife
  • 2017 Feb 14

Literature context: 3 (RRID:CVCL_0045) cell line


The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues-a mechanism that may be exploited for cancer therapy.

Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating.

  • Martin GM
  • Elife
  • 2017 Jan 16

Literature context: 93 cells (RRID:CVCL_0045) for virus


KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic β-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6 Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity.

Funding information:
  • NIDDK NIH HHS - F31 DK105800()
  • NIDDK NIH HHS - R01 DK066485()

Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia.

  • Liang K
  • Cell
  • 2017 Jan 12

Literature context: C-722REHDSMZACC-22SEMDSMZACC-546HEK293ATCCCRL-1573293C6(Lu et al., 200


Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.

Funding information:
  • NCATS NIH HHS - UL1 TR001082()
  • NCI NIH HHS - P30 CA060553()
  • NCI NIH HHS - R01 CA101774()
  • NCI NIH HHS - R01 CA117907()
  • NCI NIH HHS - R01 CA214035()
  • NCI NIH HHS - R35 CA197569()
  • NCI NIH HHS - R50 CA211428()
  • NCI NIH HHS - T32 CA080621()
  • NIGMS NIH HHS - R01 GM120109()

Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.

  • Jiang BC
  • J. Neurosci.
  • 2017 Jan 18

Literature context: 7_HEK293, RRID:CVCL_0045) cells usi


DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3-/- mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain. SIGNIFICANCE STATEMENT: Peripheral nerve injury induces changes of gene expression in the spinal cord that may contribute to the pathogenesis of neuropathic pain. CXCR3 is a chemokine receptor. Whether it is involved in neuropathic pain and how it is regulated after nerve injury remain largely unknown. Our study demonstrates that spinal nerve ligation downregulates the expression of DNMT3b, which may cause demethylation of Cxcr3 gene promoter and facilitate the binding of CCAAT/enhancer binding protein α with Cxcr3 promoter and further increase CXCR3 expression in spinal neurons. The upregulated CXCR3 may contribute to neuropathic pain by facilitating central sensitization. Our study reveals an epigenetic mechanism underlying CXCR3 expression and also suggests that targeting the expression or activation of CXCR3 signaling may offer new therapeutics for neuropathic pain.

Mechanistic Insight into NMDA Receptor Dysregulation by Rare Variants in the GluN2A and GluN2B Agonist Binding Domains.

  • Swanger SA
  • Am. J. Hum. Genet.
  • 2016 Dec 1

Literature context: bryonic kidney-293 (HEK) cells (CRL 1573, ATCC) were plated on glass cov


Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.

Splicing repression allows the gradual emergence of new Alu-exons in primate evolution.

  • Attig J
  • Elife
  • 2016 Nov 18

Literature context: CRL-1573, RRID:CVCL_0045). HR1 cell


Alu elements are retrotransposons that frequently form new exons during primate evolution. Here, we assess the interplay of splicing repression by hnRNPC and nonsense-mediated mRNA decay (NMD) in the quality control and evolution of new Alu-exons. We identify 3100 new Alu-exons and show that NMD more efficiently recognises transcripts with Alu-exons compared to other exons with premature termination codons. However, some Alu-exons escape NMD, especially when an adjacent intron is retained, highlighting the importance of concerted repression by splicing and NMD. We show that evolutionary progression of 3' splice sites is coupled with longer repressive uridine tracts. Once the 3' splice site at ancient Alu-exons reaches a stable phase, splicing repression by hnRNPC decreases, but the exons generally remain sensitive to NMD. We conclude that repressive motifs are strongest next to cryptic exons and that gradual weakening of these motifs contributes to the evolutionary emergence of new alternative exons.

Funding information:
  • NIA NIH HHS - R01 AG043975(United States)

Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.

  • Diehl WE
  • Cell
  • 2016 Nov 3

Literature context: tal Models: Cell LinesHEK293ATCCCRL-1573U2OSATCCHTB-96S008842Coriell Cel


The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.

The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.

  • Zhao J
  • Elife
  • 2016 Oct 6

Literature context: 93 cells (RRID:CVCL_0045) were cult


Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.

Funding information:
  • NIMH NIH HHS - P50MH103222(United States)

Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

  • Pylypenko O
  • Elife
  • 2016 Sep 13

Literature context: CRL-1573, RRID:CVCL_0045) and HeLa


There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes.

Funding information:
  • NIDCD NIH HHS - R01DC009236(United States)

Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.

  • Calcagnì A
  • Elife
  • 2016 Sep 26

Literature context: CRL-1573, RRID:CVCL_0045) and HK2 (


TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014). The mechanisms leading to kidney tumor development remain uncharacterized and effective therapies are yet to be identified. Hence, the need to model these diseases in an experimental animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of kidney samples revealed transcriptional induction and enhanced signaling of the WNT β-catenin pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of the WNT pathway.

Funding information:
  • NIGMS NIH HHS - R01 GM064709(United States)

BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.

  • Dias C
  • Am. J. Hum. Genet.
  • 2016 Aug 4

Literature context: 85120602, RRID:CVCL_0045) were cult


Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.

Funding information:
  • European Research Council - (International)

An optimized fluorescent probe for visualizing glutamate neurotransmission.

  • Marvin JS
  • Nat. Methods
  • 2013 Feb 30

Literature context: play vector.The fluorescence of HEK293 cells transfected with pCMV.iGl


We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

Funding information:
  • Howard Hughes Medical Institute - (United States)
  • NIGMS NIH HHS - T32 GM007308()
  • NINDS NIH HHS - R01 NS047325()

Regulation of Kv2.1 K(+) conductance by cell surface channel density.

  • Fox PD
  • J. Neurosci.
  • 2013 Jan 16

Literature context: nel (Tseng-Crank et al., 1993). HEK 293 cells (American Type Culture Co


The Kv2.1 voltage-gated K(+) channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites, and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are nonconducting. Using total internal reflection fluorescence microscopy, the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared with K(+) channel conductance measured by whole-cell voltage clamp of the same cell. This approach indicated that, as channel density increases, nonclustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the nonconducting state with 17% conducting K(+) at higher surface densities. The nonconducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immunofluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared with the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 d, respectively. Together, these data indicate that the nonconducting state depends primarily on surface density as opposed to cluster location and that this nonconducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K(+) conductance further supports a nonconducting role for Kv2.1 in excitable tissues.

Funding information:
  • NIA NIH HHS - AG13154(United States)