X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Oct-3/4 (C-10) antibody

RRID:AB_628051

Antibody ID

AB_628051

Target Antigen

POU5F1 human, mouse, rat

Proper Citation

(Santa Cruz Biotechnology Cat# sc-5279, RRID:AB_628051)

Clonality

monoclonal antibody

Comments

validation status unknown check with seller; recommendations: ELISA; Flow Cytometry; Immunocytochemistry; Immunofluorescence; Immunohistochemistry; Immunoprecipitation; Western Blot; Western Blotting, Immunoprecipitation, Immunofluorescence, Immunohistochemistry(P), Flow Cytometry, ELISA

Clone ID

C-10

Host Organism

mouse

Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines.

  • Miquel-Serra L
  • Stem Cell Res
  • 2018 Jul 3

Literature context: :1001:21:21:1001:100Santa Cruz, sc-5279R&D Systems, AF1997ABR, PA1-1696


Abstract:

Multiple sclerosis (MS) is considered a chronic autoimmune disease of the central nervous system that leads to gliosis, demyelination, axonal damage and neuronal death. The MS disease aetiology is unknown, though a polymorphism of the TNFRSF1A gene, rs1800693, is known to confer an increased risk for MS. Using retroviral delivery of reprogramming transgenes, we generated six MS patient-specific iPSC lines with two distinct genotypes, CC or TT, of the polymorphism rs1800693. iPSC lines had normal karyotype, expressed pluripotency genes and differentiated into the three germ layers. These lines offer a good tool to study MS pathomechanisms and for drug testing.

Funding information:
  • NIDDK NIH HHS - DK075386(United States)

Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease.

  • Sommer A
  • Cell Stem Cell
  • 2018 Jul 5

Literature context: D: AB_628051 Nanog R&D Systems AF2729, RRID:


Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of midbrain neurons (MBNs). Recent evidence suggests contribution of the adaptive immune system in PD. Here, we show a role for human T lymphocytes as cell death inducers of induced pluripotent stem cell (iPSC)-derived MBNs in sporadic PD. Higher Th17 frequencies were found in the blood of PD patients and increased numbers of T lymphocytes were detected in postmortem PD brain tissues. We modeled this finding using autologous co-cultures of activated T lymphocytes and iPSC-derived MBNs of sporadic PD patients and controls. After co-culture with T lymphocytes or the addition of IL-17, PD iPSC-derived MBNs underwent increased neuronal death driven by upregulation of IL-17 receptor (IL-17R) and NFκB activation. Blockage of IL-17 or IL-17R, or the addition of the FDA-approved anti-IL-17 antibody, secukinumab, rescued the neuronal death. Our findings indicate a critical role for IL-17-producing T lymphocytes in sporadic PD.

Funding information:
  • NIDCR NIH HHS - DE019075(United States)

A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity.

  • Percharde M
  • Cell
  • 2018 Jun 19

Literature context: Cruz Biotechnology Cat# sc5279 RRID:AB_628051 Anti-Nanog, rabbit polyclonal A


Abstract:

Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.

Funding information:
  • NCI NIH HHS - P30 CA54174(United States)
  • NIGMS NIH HHS - R01 GM113014()
  • NIGMS NIH HHS - R01 GM123556()

Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency.

  • Adachi K
  • Cell Stem Cell
  • 2018 Jun 11

Literature context: a Cruz Cat# sc-5279; RRID:AB_628051 Goat polyclonal anti-Sox17 R&D


Abstract:

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.

Funding information:
  • Intramural NIH HHS - Z01 AI000904-06(United States)

Generation of an induced pluripotent stem cell line from a patient with non-syndromic CLN3-associated retinal degeneration and a coisogenic control line.

  • Zhang X
  • Stem Cell Res
  • 2018 May 13

Literature context: ruz Biotechnology Cat# sc-5279, RRID:AB_628051 Rabbit anti-SOX2 1:200 Thermo F


Abstract:

We report the generation of the human iPSC line LEIi004-A from a patient with late-onset non-syndromic retinitis pigmentosa caused by compound heterozygous mutations in the CLN3 gene. Reprogramming of primary dermal fibroblasts was performed using episomal plasmids containing OCT4, SOX2, KLF4, L-MYC, LIN28, shRNA for p53 and mir302/367 microRNA. To create a coisogenic control line, one CLN3 variant was corrected in the patient-iPSC using CRISPR/Cas9 gene editing to generate the iPSC line LEIi004-A-1.

Funding information:
  • NINDS NIH HHS - R01-NS37717(United States)

iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications.

  • Ou J
  • Cell
  • 2018 May 3

Literature context: ti-OCT3/4 (1:500)Santa CruzCat# sc-5279Rabbit polyclonal anti-NANOG (1:


Abstract:

Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.

Funding information:
  • NCI NIH HHS - CA035299(United States)

Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer.

  • Bagheri V
  • J. Cell. Physiol.
  • 2018 May 11

Literature context: Cruz Biotechnology, Cat# sc5279 RRID:AB_628051) using flow cytometry.


Abstract:

Gastric cancer (GC) is the third and fifth cause of cancer-associated mortality for men and women throughout the world, respectively. Despite the use of surgery and chemotherapy for GC therapy, there are no efficient therapeutic protocols for it to date. Cancer stem cells (CSCs) due to their pivotal role in tumor initiation, growth, progression, invasion, distant metastasis, recurrence and resistance to anticancer drugs are very appealing targets for cancer therapies. Here, we isolated and identified CSCs from a chemotherapy-treated patient. Small subpopulation of dissociated cells after tissue digestion formed spheroid colonies in serum-free media under the non-adherent condition. These spheroid colonies differentiated into epithelial like cells in serum-containing medium. Few sphere-forming cells carried CD44 and CD54 markers overexpressed DLL4 that is responsible for tumor growth and angiogenesis. Subcutaneous injections of sphere-forming cells in different passages conferred tumorigenicity in nude mice. Sphere-forming cells upregulated CD44 polymorphisms CD44v3, -v6, and -v8 -10, stemness factors OCT4, SOX2, SALL4 and Cripto-1, self-renewal molecules IHh, Wnt, β-catenin and BMI1, and epithelial mesenchymal transition (EMT) markers Twist1 and Snail1 in vitro and in vivo. Moreover, these cells similar to sphere-forming cells isolated from a chemotherapy-free patient expressed Oct-4 and β-catenin proteins. However, the Twist1 protein was only expressed by sphere-forming cells derived from the chemotherapy-treated patient. Thus, these cells have all the characteristics of stationary and migratory CSCs, including tumorigenicity, self-renewal, pluripotency, invasion and metastasis. Taken together, targeting chemotherapy-enriched CSCs as chemo-resistance cells observed in GC patients can provide more effective therapeutic strategies compared to untreated patients.

Funding information:
  • NCATS NIH HHS - UL1 TR000430(United States)

Developing two reference control samples for the Indian population.

  • Iyer S
  • Stem Cell Res
  • 2018 May 12

Literature context: ion at the following dilutions, OCT3/4 antibody (C-10) (Santa Cruz Biotechnology, cat. No. sc5279) at 1:300 and Anti-SOX2 (Molecula


Abstract:

Human induced Pluripotent Stem Cells (HiPSCs) have immense potential in research and therapeutics. Under the aegis of Department of Biotechnology funded national program entitled, "The Accelerator program for Discovery in Brain Disorders using Stem Cells (ADBS)" we have established a HiPSC biorepository (https://www.ncbs.res.in/adbs/bio-repository) with an objective to study severe mental illness. The repository comprises of HiPSC lines derived from healthy control donors and individuals with life time diagnosis of severe mental illness from dense families. In the current report we submit information regarding two population control reference lines (male = 1; female = 1) from this biorepository.

Funding information:
  • Medical Research Council - G0701153(United Kingdom)

Generation of a human CDX2 knock-in reporter iPSC line (MHHi007-A-1) to model human trophoblast differentiation.

  • Malysheva SV
  • Stem Cell Res
  • 2018 May 19

Literature context: RRID:AB_628051 Mouse anti-NANOG (IgG1) 1:100 C


Abstract:

Caudal-type homeobox 2 (CDX2) transcription factor is an important marker for early trophoblast lineages and intestinal epithelium. Due to its nuclear expression the immunostaining and sorting of viable CDX2pos cells is not possible. In this paper we report the generation and describe key characteristics of a CDX2Venus knock-in reporter hiPSC-cell line (MHHi007-A-1) which can serve as an in vitro tool to study human trophoblast and intestinal differentiation.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines.

  • Zhong Y
  • Stem Cell Res
  • 2018 May 18

Literature context: Oct4 Santa Cruz Cat# sc-5279 RRID:AB_628051 Gata4 Santa Cruz Cat# sc-9053 R


Abstract:

Mouse blastocysts contain the committed precursors of the extraembryonic endoderm (ExEn), which express the key transcription factor Oct4, depend on LIF/LIF-like factor-driven Jak/Stat signaling, and initially exhibit lineage plasticity. Previously described rat blastocyst-derived ExEn precursor-like cell lines (XENP cells/HypoSCs) also show these features, but equivalent mouse blastocyst-derived cell lines are lacking. We now present mouse blastocyst-derived cell lines, named primitive XEN (pXEN) cells, which share these and additional characteristics with the XENP cells/HypoSCs, but not with previously known mouse blastocyst-derived XEN cell lines. Otherwise, pXEN cells are highly similar to XEN cells by morphology, lineage-intrinsic differentiation potential, and multi-gene expression profile, although the pXEN cell profile correlates better with the blastocyst stage. Finally, we show that pXEN cells easily convert into XEN-like cells but not vice versa. The findings indicate that (i) pXEN cells are more representative than XEN cells of the blastocyst stage; (ii) mouse pXEN, rather than XEN, cells are homologs of rat XENP cells/HypoSCs, which we propose to call rat pXEN cells.

Funding information:
  • NIAID NIH HHS - T32-AI052080(United States)

Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo.

  • Kooreman NG
  • Cell Stem Cell
  • 2018 Apr 5

Literature context: ti-mouseSanta Cruz Biotechnologysc-5279c-Myc anti-mouseEMD Millipore06-


Abstract:

Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b+GR1hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy.

Funding information:
  • NCI NIH HHS - P01 CA055164(United States)
  • NIBIB NIH HHS - T32 EB009035()

Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B.

  • Buijsen RAM
  • Stem Cell Res
  • 2018 Apr 16

Literature context: ruz Biotechnology Cat# sc-5279, RRID:AB_628051mouse IgG1 anti-Nanog1:150Santa


Abstract:

Spinocerebellar ataxia type 1 (SCA1) is a hereditary neurodegenerative disease caused by a CAG repeat expansion in exon 8 of the ATXN1 gene. We generated induced pluripotent stem cells (hiPSCs) from a SCA1 patient and his non-affected sister by using non-integrating Sendai Viruses (SeV). The resulting hiPSCs are SeVfree, express pluripotency markers, display a normal karyotype, retain the mutation (length of the CAG repeat expansion in the ATXN1 gene) and are able to differentiate into the three germ layers in vitro.

Funding information:
  • NIAID NIH HHS - T32 AI007638-09(United States)

Generation and characterization of two human iPSC lines from patients with methylmalonic acidemia cblB type.

  • Richard E
  • Stem Cell Res
  • 2018 Apr 17

Literature context: 4 1:60 Santa Cruz Cat# sc-5279, RRID:AB_628051 Rat IgM anti-SSEA-3 1:3 Hybrido


Abstract:

Two human induced pluripotent stem cell (iPSC) lines were generated from fibroblasts of two siblings with methylmalonic acidemia cblB type carrying mutations in the MMAB gene: c.287T➔C (p.Ile96Thr) and a splicing loss-of-function variant c.584G➔A affecting the last nucleotide of exon 7 in MMAB (p.Ser174Cysfs*23). Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability.

Funding information:
  • Telethon - GGP08051(Italy)

Generation of the human induced pluripotent stem cell (hiPSC) line PSMi003-A from a patient affected by an autosomal recessive form of Long QT Syndrome type 1.

  • Mura M
  • Stem Cell Res
  • 2018 Apr 24

Literature context: SCBT Cat# sc-5279, RRID:AB_628051 Mouse anti Sox2 1:500 R&D Syste


Abstract:

We generated human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a 51years old female patient homozygous for the mutation c.535 G>A p.G179S on the KCNQ1 gene, causing a severe form of autosomal recessive Long QT Syndrome type 1 (AR-LQT1), not associated with deafness. The hiPSCs, generated using four retroviruses each encoding for a reprogramming factor OCT4, SOX2, KLF4, cMYC, are pluripotent and can differentiate into spontaneously beating cardiomyocytes (hiPSC-CMs).

Funding information:
  • NCI NIH HHS - K22 CA130984(United States)

Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency.

  • Cao S
  • Cell Stem Cell
  • 2018 Apr 5

Literature context: -Oct3/4 Santa Cruz Cat#sc-5279; RRID:AB_628051 Goat polyclonal anti-Sox2 Santa


Abstract:

Despite its exciting potential, chemical induction of pluripotency (CIP) efficiency remains low and the mechanisms are poorly understood. We report the development of an efficient two-step serum- and replating-free CIP protocol and the associated chromatin accessibility dynamics (CAD) by assay for transposase-accessible chromatin (ATAC)-seq. CIP reorganizes the somatic genome to an intermediate state that is resolved under 2iL condition by re-closing previously opened loci prior to pluripotency acquisition with gradual opening of loci enriched with motifs for the OCT/SOX/KLF families. Bromodeoxyuridine, a critical ingredient of CIP, is responsible for both closing and opening critical loci, at least in part by preventing the opening of loci enriched with motifs for the AP1 family and facilitating the opening of loci enriched with SOX/KLF/GATA motifs. These changes differ markedly from CAD observed during Yamanaka-factor-driven reprogramming. Our study provides insights into small-molecule-based reprogramming mechanisms and reorganization of nuclear architecture associated with cell-fate decisions.

Funding information:
  • NCI NIH HHS - R01CA31534(United States)

Generation of the human induced pluripotent stem cell (hiPSC) line PSMi002-A from a patient affected by the Jervell and Lange-Nielsen syndrome and carrier of two compound heterozygous mutations on the KCNQ1 gene.

  • Mura M
  • Stem Cell Res
  • 2018 Apr 21

Literature context: SCBT Cat# sc-5279, RRID:AB_628051 Mouse anti Sox2 1:500 R&D Syste


Abstract:

We report the generation of human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a female patient carrier of the two compound heterozygous mutations c.568 C>T p.R190W (maternal allele), and c.1781 G>A p.R594Q (paternal allele) on the KCNQ1 gene, causing Jervell and Lange-Nielsen Syndrome (JLNS). To obtain hiPSCs, we used the classical approach of the four retroviruses each encoding for a reprogramming factor OCT4, SOX2, KLF4, cMYC. The obtained hiPSC clones display pluripotent stem cell characteristics, and differentiate into spontaneously beating cardiomyocytes (hiPSC-CMs).

Funding information:
  • NIDDK NIH HHS - P30 DK019525(United States)

Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation.

  • Corsini NS
  • Cell Stem Cell
  • 2018 Apr 5

Literature context: c-5279; RRID:AB_628051 MYBBP1A (F-25) Santa Cruz Cat#s


Abstract:

Stem cell-specific transcriptional networks are well known to control pluripotency, but constitutive cellular processes such as mRNA splicing and protein synthesis can add complex layers of regulation with poorly understood effects on cell-fate decisions. Here, we show that the RNA binding protein HTATSF1 controls embryonic stem cell differentiation by regulating multiple aspects of RNA processing during ribosome biogenesis. HTATSF1, in a complex with splicing factor SF3B1, controls intron removal from ribosomal protein transcripts and regulates ribosomal RNA transcription and processing, thereby controlling 60S ribosomal abundance and protein synthesis. HTATSF1-dependent protein synthesis is essential for naive pre-implantation epiblast to transition into post-implantation epiblast, a stage with transiently low protein synthesis, and further differentiation toward neuroectoderm. Together, these results identify coordinated regulation of ribosomal RNA and protein synthesis by HTATSF1 and show that this essential mechanism controls protein synthesis during early mammalian embryogenesis.

Funding information:
  • NIGMS NIH HHS - GM077403(United States)

The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output.

  • Bulut-Karslioglu A
  • Cell Stem Cell
  • 2018 Mar 1

Literature context: ruz Biotechnology Cat# sc-5279, RRID:AB_628051 Anti-Nanog, rabbit monoclonal C


Abstract:

A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.

Funding information:
  • NICHD NIH HHS - F30 HD093116()
  • NIGMS NIH HHS - R01 GM113014()
  • NIGMS NIH HHS - R01 GM123556()
  • NIGMS NIH HHS - R01 GM55040(United States)

Establishment of induced pluripotent stem cell line (ZZUi010-A) from an Alzheimer's disease patient carrying an APP gene mutation.

  • Wang Z
  • Stem Cell Res
  • 2018 Mar 19

Literature context: RRID:AB_628051 Pluripotency markers Rabbit ant


Abstract:

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders. Previous studies have identified mutations in several genes, such as amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2), in patients with early-onset (<65years) familial AD. Recently, a patient with an APP gene mutation was identified; the dermal fibroblasts of the patient were obtained and a line of induced pluripotent stem cells (iPSCs) was successfully generated using the Sendai-virus (SeV) delivery system. The iPSC line will be useful for further study of the pathomechanism and drug screening for AD.

Generation of induced pluripotent stem cell line (ZZUi005-A) from a 21-year-old patient with a novel RAB39B gene mutation in X-linked juvenile parkinsonism.

  • Wang Y
  • Stem Cell Res
  • 2018 Mar 19

Literature context: RRID:AB_628051 Pluripotency markers Rabbit ant


Abstract:

Ras-related protein 39B (RAB39B) mutation has been reported as a potential cause of X-linked Parkinson's disease (PD), a rare form of familial PD. Recently, a novel RAB39B mutation was identified in an X-linked juvenile parkinsonism family and the dermal fibroblasts of the patient were obtained and successfully induced to induced pluripotent stem cells (iPSCs) by the human OSKM transcription factors using the Sendai-virus delivery system. Our model may offer a good platform for further research of the pathomechanism, drug testing, and gene therapy of this disease.

Generation of induced pluripotent stem cell line (ZZUi011-A) from urine sample of a normal human.

  • Sun H
  • Stem Cell Res
  • 2018 Mar 27

Literature context: uz Biotechnology, Cat# sc-5279, RRID:AB_628051 Pluripotency markers Rabbit ant


Abstract:

Urine cells collected from 200mL clean midsection urine of a 25-year-old healthy man were reprogrammed into pluripotent stem cells via Sendai virus delivery system. The induced pluripotent stem cells showed a normal karyotype and exhibited the potential to differentiate into three germ layers in a teratoma assay. This cell line may serve as a useful control for comparison with other pluripotent stem cell lines induced from somatic cells of patients with genetic neurodegenerative disorders.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Generation of a luciferase-expressing human embryonic stem cell line: NERCe002-A-2.

  • Peng Y
  • Stem Cell Res
  • 2018 Mar 5

Literature context: Biotechnology, cat. # SC-5279, RRID:AB_628051 Pluripotency marker Rabbit anti


Abstract:

The human embryonic stem cell line NERCe002-A-2 was generated by transduction of NERCe002-A cells with an expression vector carrying the luciferase gene. The stem cells labelled with luciferase can be transplanted into animals and detected by the bioluminescence imaging technology. This provides optimal prospects of application to in vivo stem cell tracing. Luciferin served as a substrate to detect the activity of luciferase, and luciferase expression was measured by quantitative PCR. Characterization assays suggested that the NERCe002-A-2 cell line expresses typical markers of pluripotency and can form the 3 germ layers in vivo.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Generation of two induced pluripotent stem cell (iPSC) lines from p.F508del Cystic Fibrosis patients.

  • Fleischer A
  • Stem Cell Res
  • 2018 Mar 20

Literature context: 00 Santa Cruz Biotech; sc-5279; RRID:AB_628051 Rabbit anti-NANOG 1:150 Abcam;


Abstract:

Cystic Fibrosis (CF) is a monogenic, lethal disease caused by mutations in the cystic fibrosis transmembrane conductance (CFTR) gene. Here we report the production of CF-iPS cell lines from two different p.F508del homozygous female patients (Table 1). Two different primary cell types, skin fibroblasts and keratinocytes, were transfected with retroviral cocktails containing four: c-MYC, KLF4, OCT4 and SOX2 (MKOS) or three: KLF4, OCT4 and SOX2 (KOS) reprogramming factors. Two fibroblast-derived MKOS lines are described in the main text. The lines carry the p.F508del mutation, have a normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.

Funding information:
  • NIDDK NIH HHS - R01-DK069983(United States)

Establishment and characterization of a human embryonic stem cell line, NERCe002-A-3, with inducible 14-3-3ζ overexpression.

  • He J
  • Stem Cell Res
  • 2018 Feb 8

Literature context: ruz Biotechnology Cat# SC-5279, RRID:AB_628051 Pluripotency marker Rabbit anti


Abstract:

NERCe002-A-3 cells were generated from the normal human embryonic stem cell line NERCe002-A. NERCe002-A-3 cells overexpressed 14-3-3ζ after exposure to doxycycline. 14-3-3ζ protein have the ability to bind a multitude of functionally diverse signalling proteins. The NERCe002-A-3 cell line is considered a model for functional studies of the 14-3-3ζ protein in hESC self-renewal and cell differentiation. Doxycycline-treated NERCe002-A-3 cells showed a>27-fold increase in relative expression of 14-3-3ζ as compared with un-induced cells. Characterization assays proved that NERCe002-A-3 cells express typical markers of pluripotency and have the ability to form the three germ layers in vivo.

Funding information:
  • NIAID NIH HHS - T32AI60573(United States)

CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency.

  • Liu P
  • Cell Stem Cell
  • 2018 Feb 1

Literature context: a Cruz Cat#sc-5279; RRID:AB_628051 Rabbit polyclonal anti-SOX2 Mil


Abstract:

Generation of induced pluripotent stem cells typically requires the ectopic expression of transcription factors to reactivate the pluripotency network. However, it remains largely unclear what remodeling events on endogenous chromatin trigger reprogramming toward induced pluripotent stem cells (iPSCs). Toward this end, we employed CRISPR activation to precisely target and remodel endogenous gene loci of Oct4 and Sox2. Interestingly, we found that single-locus targeting of Sox2 was sufficient to remodel and activate Sox2, which was followed by the induction of other pluripotent genes and establishment of the pluripotency network. Simultaneous remodeling of the Oct4 promoter and enhancer also triggered reprogramming. Authentic pluripotent cell lines were established in both cases. Finally, we showed that targeted manipulation of histone acetylation at the Oct4 gene locus could also initiate reprogramming. Our study generated authentic iPSCs with CRISPR activation through precise epigenetic remodeling of endogenous loci and shed light on how targeted chromatin remodeling triggers pluripotency induction.

Funding information:
  • NIAMS NIH HHS - P50AR05508(United States)

Generation of induced pluripotent stem cell line (ZZUi004-A) from urine sample of a patient with spinocerebellar ataxia type 3.

  • Wang Y
  • Stem Cell Res
  • 2018 Feb 15

Literature context: UZ BIOTECHNOLOGY, Cat# sc-5279, RRID:AB_628051 Pluripotency markers Mouse anti


Abstract:

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the region of the ATXN3 gene. The main feature of SCA3 is progressive ataxia, which affects balance, gait, and speech. Urine cells (UCs) of a SCA3 patient were successfully translated to induced pluripotent stem cells (iPSCs) by using the Sendai virus delivery system. ZZUi004-A cell line may provide a robust platform for further study of SCA3 pathogenesis as well as drug testing and gene therapy research.

Funding information:
  • NCI NIH HHS - CA022556(United States)

Generation of a human embryonic stem cell line expressing tetrameric Zoanthus sp. green fluorescent protein: NERCe002-A-1.

  • Duan X
  • Stem Cell Res
  • 2018 Feb 8

Literature context: uz Biotechnology Cat # SC-5279, RRID:AB_628051 Pluripotency marker Rabbit anti


Abstract:

The human embryonic stem cell (hESC) line NERCe002-A-1 was generated through lentiviral transduction of the original NERCe002-A-1 hESC line with Zoanthus sp. green fluorescent protein (ZsGreen). Cells that expressed ZsGreen showed a >8.6-fold increase in fluorescence intensity compared with that of cells that expressed enhanced green fluorescent protein. The fluorescent hESC line can aid in identification of biological characteristics in vitro and in vivo by tracking cell growth, migration, and differentiation. Characteristic tests confirmed that the NERCe002-A-1 cell line expressed typical markers of pluripotency and had the capability to form the three germ layers in vivo.

Funding information:
  • Wellcome Trust - WT093587MA(United Kingdom)

Generation of a human iPSC line, IISHDOi002-A, with a 46, XY/47, XYY mosaicism and belonging to an African mitochondrial haplogroup.

  • Ortuño-Costela MDC
  • Stem Cell Res
  • 2018 Feb 23

Literature context: stems Cat# sc-5279, RRID:AB_628051 Mouse anti-OCT4 1:100 Santa Cru


Abstract:

We have generated a human iPSC line, IISHDOi002-A, from commercial primary normal human dermal fibroblasts belonging to an African mitochondrial haplogroup (L3), and with a 46, XY/47, XYY mosaicism. For this purpose, reprogramming factors Oct3/4, Sox2, Klf4 and cMyc were delivered using a non-integrative methodology that involves the use of Sendai virus.

Funding information:
  • NCATS NIH HHS - UL1 TR000448(United States)

Generation of a human embryonic stem cell line, NERCe003-A-1, with lentivirus vector-mediated inducible CTNNB1 overexpression.

  • Wang Y
  • Stem Cell Res
  • 2018 Feb 13

Literature context: Biotechnology, cat. # SC-5279, RRID:AB_628051 Pluripotency markers rabbit ant


Abstract:

The human embryonic stem cell (hESC) line NERCe003-A-1 was generated by introducing lentiviral-vector-mediated tetracycline-inducible β-catenin expression into a normal hESC line, NERCe003-A. The resulting cell line can overexpress the β-catenin protein, encoded by the CTNNB1 gene, after exposure to doxycycline (Dox). CTNNB1 gene expression was confirmed by quantitative PCR (qPCR) and immunofluorescence assays. Further characterization confirmed that the NERCe003-A-1 cell line expresses typical pluripotency markers and has the ability to form the three germ layers both in vitro and in vivo.

Funding information:
  • Wellcome Trust - A12788(United Kingdom)

Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3.

  • Jansch C
  • Stem Cell Res
  • 2018 Feb 27

Literature context: 4 1:50 Santa Cruz, Cat# sc5279, RRID:AB_628051 Mouse anti TRA-1-60 1:50 Santa


Abstract:

Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.

Funding information:
  • NIDCD NIH HHS - R01 DC009413(United States)

Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning.

  • Morgani SM
  • Elife
  • 2018 Feb 7

Literature context: ruz Biotechnology Cat# sc-5279, RRID:AB_628051 1:100


Abstract:

During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.

Funding information:
  • Cancer Research UK - 06-914/915(United Kingdom)
  • Eunice Kennedy Shriver National Institute of Child Health and Human Development - R01HD080699()
  • National Cancer Institute - P30CA008748()
  • National Institute of Diabetes and Digestive and Kidney Diseases - R01DK084391()
  • National Science Foundation - PHY1502151()
  • NYSTEM - C029568()

Generation of FHL2 homozygous knockout lines from human embryonic stem cells by CRISPR/Cas9-mediated ablation.

  • Chang CW
  • Stem Cell Res
  • 2018 Jan 2

Literature context: RRID:AB_628051 Differentiation marker Rabbit a


Abstract:

Cardiovascular disease is the leading cause of morbidity and mortality in the world. Mutations in the FHL2 (Four and a half LIM domains protein 2) gene are associated with cardiomyopathy in patients. Here, we generated two homozygous knockout lines using CRISPR/Cas9-mediated ablation in a human embryonic stem cell (hESC) WA09 line. These knockout lines exhibit a normal karyotype without expressing FHL2 protein, while maintaining pluripotency and differentiation properties. These isogenic mutation lines will be provided as a disease model for cardiomyopathy studies and drug screening.

Funding information:
  • NCRR NIH HHS - S10RR027926(United States)

Establishment of induced pluripotent stem cell line (ZZUi009-A) from an Alzheimer's disease patient carrying a PSEN1 gene mutation.

  • Wang Y
  • Stem Cell Res
  • 2018 Jan 6

Literature context: RRID:AB_628051 Pluripotency markers Rabbit ant


Abstract:

Skin fibroblasts were obtained from a 42-year-old Alzheimer's disease (AD) patient carrying mutations in the PSEN1 gene. An iPSC line was successfully established using the Sendai-virus (SeV) delivery system. The patient-specific iPSCs were free of genomically integrated reprogramming genes, had the specific mutation, expressed the expected pluripotency markers, and had the potential to differentiate into cells of all three germ layers. Our model might offer a robust platform for further study of the pathomechanism of this disease as well as drug testing and gene therapy studies.

Funding information:
  • NINDS NIH HHS - R01 NS089622(United States)

A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3β in Regulating Embryonic Stem Cell Fate.

  • Chen X
  • Dev. Cell
  • 2017 Dec 4

Literature context: Cruz Biotechnology Cat#sc-5279; RRID:AB_628051 Goat polyclonal anti-Sox-2 (Y-1


Abstract:

Glycogen synthase kinase 3 (GSK3) plays a central role in diverse cellular processes. GSK3 has two mammalian isozymes, GSK3α and GSK3β, whose functions remain ill-defined because of a lack of inhibitors that can distinguish between the two highly homologous isozymes. Here, we show that GSK3α and GSK3β can be selectively inhibited in mouse embryonic stem cells (ESCs) using a chemical-genetic approach. Selective inhibition of GSK3β is sufficient to maintain mouse ESC self-renewal, whereas GSK3α inhibition promotes mouse ESC differentiation toward neural lineages. Genome-wide transcriptional analysis reveals that GSK3α and GSK3β have distinct sets of downstream targets. Furthermore, selective inhibition of individual GSK3 isozymes yields distinct phenotypes from gene deletion, highlighting the power of the chemical-genetic approach in dissecting kinase catalytic functions from the protein's scaffolding functions. Our study opens new avenues for defining GSK3 isozyme-specific functions in various cellular processes.

Funding information:
  • NICHD NIH HHS - T32 HD060549()
  • NINDS NIH HHS - R01 NS048276(United States)

Lymphoblastoids cell lines - Derived iPSC line from a 26-year-old myotonic dystrophy type 1 patient carrying (CTG)200 expansion in the DMPK gene: CHUQi001-A.

  • Martineau L
  • Stem Cell Res
  • 2017 Dec 24

Literature context: ruz Cat# sc-5279, RRID:AB_628051 Mouse anti-NANOG 1:2000 Millipo


Abstract:

Human immortalized Epstein-Barr virus (EBV) lymphoblastoids cells line (LCLs) from a 26-year- old male affected by an adult form of myotonic dystrophy type 1 (DM1) disease and carrying 200 CTG repeats mutation in the blood was used to generate induced pluripotent stem cells (iPSCs) using the Sendai virus expressing KLF4, OCT4, SOX2 and C-MYC. The resulting iPSCs were EBV free, expressed the pluripotency markers, could be differentiated into the three germ layers in vitro, had a normal karyotype, and retained the genetic DM1 mutation. This iPSC line could be useful for the investigation of DM1 mechanisms.

Generation of hiPSTZ16 (ISMMSi003-A) cell line from normal human foreskin fibroblasts.

  • Dejosez M
  • Stem Cell Res
  • 2017 Dec 12

Literature context: ruz Biotechnology sc-5279 RRID:AB_628051 SSEA4 APC FC 1:5 R&D Systems FA


Abstract:

Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A). These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

Generation of an ASS1 heterozygous knockout human embryonic stem cell line, WAe001-A-13, using CRISPR/Cas9.

  • Yuan F
  • Stem Cell Res
  • 2017 Dec 17

Literature context: RRID:AB_628051 Pluripotency Marker Mouse anti-


Abstract:

The ASS1 gene encodes argininosuccinate synthetase-1, a cytosolic enzyme with a critical role in the urea cycle. Mutations are found in all ASS1 exons and cause the autosomal recessive disorder citrullinemia. Using CRISPR/Cas9-editing, we established the WAe001-A-13 cell line, which was heterozygous for an ASS1 mutation, from the human embryonic stem cell line H1. The WAe001-A-13 cell line maintained the pluripotent phenotype, the ability to differentiate into all three germ layers and a normal karyotype.

Funding information:
  • NIGMS NIH HHS - R01 GM079431(United States)

Transplantation of feeder-free human induced pluripotent stem cell-derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia.

  • Hermanto Y
  • J. Neurosci. Res.
  • 2017 Nov 8

Literature context: RRID:AB_628051 Oct-3/4 (C-10) antibody POU5F1


Abstract:

The use of human induced pluripotent stem cells (hiPSCs) eliminates the ethical issues associated with fetal or embryonic materials, thus allowing progress in cell therapy research for ischemic stroke. Strict regulation of cell therapy development requires the xeno-free condition to eliminate clinical complications. Maintenance of hiPSCs with feeder-free condition presents a higher degree of spontaneous differentiation in comparison with conventional cultures. Therefore, feeder-free derivation might be not ideal for developing transplantable hiPSC derivatives. We developed the feeder-free condition for differentiation of cortical neurons from hiPSCs. Then, we evaluated the cells' characteristics upon transplantation into the sham and focal brain ischemia on adult male Wistar rats. Grafts in lesioned brains demonstrated polarized reactivity toward the ischemic border, indicated by directional preferences in axonal outgrowth and cellular migration, with no influence on graft survival. Following the transplantation, forelimb asymmetry was better restored compared with controls. Herein, we provide evidence to support the use of the xeno-free condition for the development of cell therapy for ischemic stroke.

Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling.

  • Huang X
  • Elife
  • 2017 Nov 23

Literature context: 73), Oct4 (Santa Cruz, sc-5279, RRID:AB_628051), and P300 (Santa Cruz, sc-584,


Abstract:

Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during embryo implantation, followed by cell lineage specification and establishment of the basic body plan, is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progressions in vivo during mammalian embryonic development.

Funding information:
  • NIDA NIH HHS - K02 DA021863-01A1(United States)

MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux.

  • Cliff TS
  • Cell Stem Cell
  • 2017 Oct 5

Literature context: Cat#:sc-5279; RRID:AB_628051 PAX6 BioLegend Cat#:901301; RRI


Abstract:

As human pluripotent stem cells (hPSCs) exit pluripotency, they are thought to switch from a glycolytic mode of energy generation to one more dependent on oxidative phosphorylation. Here we show that, although metabolic switching occurs during early mesoderm and endoderm differentiation, high glycolytic flux is maintained and, in fact, essential during early ectoderm specification. The elevated glycolysis observed in hPSCs requires elevated MYC/MYCN activity. Metabolic switching during endodermal and mesodermal differentiation coincides with a reduction in MYC/MYCN and can be reversed by ectopically restoring MYC activity. During early ectodermal differentiation, sustained MYCN activity maintains the transcription of "switch" genes that are rate-limiting for metabolic activity and lineage commitment. Our work, therefore, shows that metabolic switching is lineage-specific and not a required step for exit of pluripotency in hPSCs and identifies MYC and MYCN as developmental regulators that couple metabolism to pluripotency and cell fate determination.

Funding information:
  • NCRR NIH HHS - S10 RR027097()
  • NIGMS NIH HHS - P01 GM085354()

A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages.

  • Tchieu J
  • Cell Stem Cell
  • 2017 Sep 7

Literature context: e Anti-OCT4 Santa Cruz sc-5279, RRID:AB_628051 Mouse Anti-ZO-1 BD Biosciences


Abstract:

Directing the fate of human pluripotent stem cells (hPSCs) into different lineages requires variable starting conditions and components with undefined activities, introducing inconsistencies that confound reproducibility and assessment of specific perturbations. Here we introduce a simple, modular protocol for deriving the four main ectodermal lineages from hPSCs. By precisely varying FGF, BMP, WNT, and TGFβ pathway activity in a minimal, chemically defined medium, we show parallel, robust, and reproducible derivation of neuroectoderm, neural crest (NC), cranial placode (CP), and non-neural ectoderm in multiple hPSC lines, on different substrates independently of cell density. We highlight the utility of this system by interrogating the role of TFAP2 transcription factors in ectodermal differentiation, revealing the importance of TFAP2A in NC and CP specification, and performing a small-molecule screen that identified compounds that further enhance CP differentiation. This platform provides a simple stage for systematic derivation of the entire range of ectodermal cell types.

Funding information:
  • NINDS NIH HHS - R01 NS072381()

Stem Cell Differentiation as a Non-Markov Stochastic Process.

  • Stumpf PS
  • Cell Syst
  • 2017 Sep 27

Literature context: body (C-10) Santa Cruz sc-5279; RRID:AB_628051 anti-Nanog Antibody abcam ab808


Abstract:

Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular "macrostates" and functionally similar molecular "microstates" and propose a model of stem cell differentiation as a non-Markov stochastic process.

Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions.

  • Li L
  • Cell Stem Cell
  • 2017 Jun 1

Literature context: #sc-5279, RRID:AB_628051 rabbit ant


Abstract:

Human fetal germ cells (FGCs) are precursors to sperm and eggs and are crucial for maintenance of the species. However, the developmental trajectories and heterogeneity of human FGCs remain largely unknown. Here we performed single-cell RNA-seq analysis of over 2,000 FGCs and their gonadal niche cells in female and male human embryos spanning several developmental stages. We found that female FGCs undergo four distinct sequential phases characterized by mitosis, retinoic acid signaling, meiotic prophase, and oogenesis. Male FGCs develop through stages of migration, mitosis, and cell-cycle arrest. Individual embryos of both sexes simultaneously contain several subpopulations, highlighting the asynchronous and heterogeneous nature of FGC development. Moreover, we observed reciprocal signaling interactions between FGCs and their gonadal niche cells, including activation of the bone morphogenic protein (BMP) and Notch signaling pathways. Our work provides key insights into the crucial features of human FGCs during their highly ordered mitotic, meiotic, and gametogenetic processes in vivo.

Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency.

  • Molotkov A
  • Dev. Cell
  • 2017 Jun 5

Literature context: sc-5279; RRID:AB_628051 Rabbit pol


Abstract:

Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.

Funding information:
  • NCI NIH HHS - P30 CA196521()
  • NIDCR NIH HHS - R01 DE022778()

Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States.

  • Collier AJ
  • Cell Stem Cell
  • 2017 Jun 1

Literature context: t#sc5279; RRID:AB_628051 Mouse anti


Abstract:

Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting.

Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2.

  • Kang M
  • Dev. Cell
  • 2017 Jun 5

Literature context: Sc-5279; RRID:AB_628051 Chemicals,


Abstract:

Fibroblast growth factor 4 (FGF4) is the key signal driving specification of primitive endoderm (PrE) versus pluripotent epiblast (EPI) within the inner cell mass (ICM) of the mouse blastocyst. To gain insight into the receptor(s) responding to FGF4 within ICM cells, we combined single-cell-resolution quantitative imaging with single-cell transcriptomics of wild-type and Fgf receptor (Fgfr) mutant embryos. Despite the PrE-specific expression of FGFR2, it is FGFR1, expressed by all ICM cells, that is critical for establishment of a PrE identity. Signaling through FGFR1 is also required to constrain levels of the pluripotency-associated factor NANOG in EPI cells. However, the activity of both receptors is required for lineage establishment within the ICM. Gene expression profiling of 534 single ICM cells identified distinct downstream targets associated with each receptor. These data lead us to propose a model whereby unique and additive activities of FGFR1 and FGFR2 within the ICM coordinate establishment of two distinct lineages.

Funding information:
  • NCI NIH HHS - P30 CA008748()
  • NIDDK NIH HHS - R01 DK084391()

DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells.

  • Choi J
  • Cell Stem Cell
  • 2017 May 4

Literature context: #sc-5279; RRID:AB_628051 Mouse mono


Abstract:

Blastocyst-derived embryonic stem cells (ESCs) and gonad-derived embryonic germ cells (EGCs) represent two classic types of pluripotent cell lines, yet their molecular equivalence remains incompletely understood. Here, we compare genome-wide methylation patterns between isogenic ESC and EGC lines to define epigenetic similarities and differences. Surprisingly, we find that sex rather than cell type drives methylation patterns in ESCs and EGCs. Cell fusion experiments further reveal that the ratio of X chromosomes to autosomes dictates methylation levels, with female hybrids being hypomethylated and male hybrids being hypermethylated. We show that the X-linked MAPK phosphatase DUSP9 is upregulated in female compared to male ESCs, and its heterozygous loss in female ESCs leads to male-like methylation levels. However, male and female blastocysts are similarly hypomethylated, indicating that sex-specific methylation differences arise in culture. Collectively, our data demonstrate the epigenetic similarity of sex-matched ESCs and EGCs and identify DUSP9 as a regulator of female-specific hypomethylation.

Funding information:
  • NHGRI NIH HHS - P50 HG006193()
  • NICHD NIH HHS - F32 HD078029()
  • NICHD NIH HHS - R01 HD058013()
  • NIGMS NIH HHS - P01 GM099117()

m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program.

  • Zhang S
  • Cancer Cell
  • 2017 Apr 10

Literature context: #sc-5279; RRID:AB_628051 anti-Nanog


Abstract:

The dynamic and reversible N6-methyladenosine (m6A) RNA modification installed and erased by N6-methyltransferases and demethylases regulates gene expression and cell fate. We show that the m6A demethylase ALKBH5 is highly expressed in glioblastoma stem-like cells (GSCs). Silencing ALKBH5 suppresses the proliferation of patient-derived GSCs. Integrated transcriptome and m6A-seq analyses revealed altered expression of certain ALKBH5 target genes, including the transcription factor FOXM1. ALKBH5 demethylates FOXM1 nascent transcripts, leading to enhanced FOXM1 expression. Furthermore, a long non-coding RNA antisense to FOXM1 (FOXM1-AS) promotes the interaction of ALKBH5 with FOXM1 nascent transcripts. Depleting ALKBH5 and FOXM1-AS disrupted GSC tumorigenesis through the FOXM1 axis. Our work uncovers a critical function for ALKBH5 and provides insight into critical roles of m6A methylation in glioblastoma.

Funding information:
  • Howard Hughes Medical Institute - R01 CA152309()
  • NCI NIH HHS - R01 CA157933()
  • NCI NIH HHS - R01 CA182684()
  • NCI NIH HHS - R01 CA201327()
  • NIGMS NIH HHS - R01 GM071440()

Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.

  • Yang Y
  • Cell
  • 2017 Apr 6

Literature context: sc-5279; RRID:AB_628051 Anti-GKLF


Abstract:

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.

Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions.

  • Petkovich DA
  • Cell Metab.
  • 2017 Apr 4

Literature context: #sc-5279; RRID:AB_628051 SOX2 antib


Abstract:

The DNA methylation levels of certain CpG sites are thought to reflect the pace of human aging. Here, we developed a robust predictor of mouse biological age based on 90 CpG sites derived from partial blood DNA methylation profiles. The resulting clock correctly determines the age of mouse cohorts, detects the longevity effects of calorie restriction and gene knockouts, and reports rejuvenation of fibroblast-derived iPSCs. The data show that mammalian DNA methylomes are characterized by CpG sites that may represent the organism's biological age. They are scattered across the genome, they are distinct in human and mouse, and their methylation gradually changes with age. The clock derived from these sites represents a biomarker of aging and can be used to determine the biological age of organisms and evaluate interventions that alter the rate of aging.

Funding information:
  • NIA NIH HHS - DP1 AG047745()
  • NIA NIH HHS - P01 AG047200()
  • NIA NIH HHS - P30 AG024824()
  • NIA NIH HHS - R01 AG019899()

An Interaction Landscape of Ubiquitin Signaling.

  • Zhang X
  • Mol. Cell
  • 2017 Mar 2

Literature context: t#sc-5279 RRID:AB_628051 Nanog eBio


Abstract:

Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.

A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.

  • Velasco S
  • Cell Stem Cell
  • 2017 Feb 2

Literature context: #sc-5279; RRID:AB_628051 Rabbit pol


Abstract:

Direct cell programming via overexpression of transcription factors (TFs) aims to control cell fate with the degree of precision needed for clinical applications. However, the regulatory steps involved in successful terminal cell fate programming remain obscure. We have investigated the underlying mechanisms by looking at gene expression, chromatin states, and TF binding during the uniquely efficient Ngn2, Isl1, and Lhx3 motor neuron programming pathway. Our analysis reveals a highly dynamic process in which Ngn2 and the Isl1/Lhx3 pair initially engage distinct regulatory regions. Subsequently, Isl1/Lhx3 binding shifts from one set of targets to another, controlling regulatory region activity and gene expression as cell differentiation progresses. Binding of Isl1/Lhx3 to later motor neuron enhancers depends on the Ebf and Onecut TFs, which are induced by Ngn2 during the programming process. Thus, motor neuron programming is the product of two initially independent transcriptional modules that converge with a feedforward transcriptional logic.

Funding information:
  • NINDS NIH HHS - NS-23805(United States)
  • NINDS NIH HHS - R01 NS081674(United States)

PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs.

  • Zhu Z
  • Cell Stem Cell
  • 2017 Feb 2

Literature context: Z sc5279, RRID:AB_628051 NANOG anti


Abstract:

The chromatin landscape and cellular metabolism both contribute to cell fate determination, but their interplay remains poorly understood. Using genome-wide siRNA screening, we have identified prohibitin (PHB) as an essential factor in self-renewal of human embryonic stem cells (hESCs). Mechanistically, PHB forms protein complexes with HIRA, a histone H3.3 chaperone, and stabilizes the protein levels of HIRA complex components. Like PHB, HIRA is required for hESC self-renewal. PHB and HIRA act together to control global deposition of histone H3.3 and gene expression in hESCs. Of particular note, PHB and HIRA regulate the chromatin architecture at the promoters of isocitrate dehydrogenase genes to promote transcription and, thus, production of α-ketoglutarate, a key metabolite in the regulation of ESC fate. Our study shows that PHB has an unexpected nuclear role in hESCs that is required for self-renewal and that it acts with HIRA in chromatin organization to link epigenetic organization to a metabolic circuit.

Funding information:
  • NIAID NIH HHS - U01 AI095611(United States)

Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

  • Wu J
  • Cell
  • 2017 Jan 26

Literature context: sc-5279; RRID:AB_628051 Mouse anti


Abstract:

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

Heterochromatin remodeling in embryonic stem cells proceeds through stochastic de-stabilization of regional steady-states.

  • Christogianni A
  • Biochim. Biophys. Acta
  • 2017 Jan 24

Literature context: sc-5279, RRID:AB_628051); anti-β3


Abstract:

Cell differentiation is associated with progressive immobilization of chromatin proteins, expansion of heterochromatin, decrease of global transcriptional activity and induction of lineage-specific genes. However, how these processes relate to one another remains unknown. We show here that the heterochromatic domains of mouse embryonic stem cells (ESCs) are dynamically distinct and possesses a mosaic sub-structure. Although random spatio-temporal fluctuations reshuffle continuously the chromatin landscape, each heterochromatic territory maintains its dynamic profile, exhibiting robustness and resembling a quasi-steady state. Transitions towards less dynamic states are detected sporadically as ESCs downregulate Nanog and exit the self-renewal phase. These transitions increase in frequency after lineage-commitment, but evolve differently depending on cellular context and transcriptional status. We propose that chromatin remodeling is a step-wise process, which involves stochastic de-stabilization of regional steady states and formation of new dynamic ensembles in coordination to changes in the gene expression program.

Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice.

  • Ma W
  • Cell
  • 2016 Dec 1

Literature context: sc-5279; RRID:AB_628051 AXL Santa


Abstract:

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.

Funding information:
  • NHLBI NIH HHS - T32 HL007088(United States)

Germline Competent Pluripotent Mouse Stem Cells Generated by Plasmid Vectors.

  • Chen CH
  • Anim. Biotechnol.
  • 2016 Mar 16

Literature context: using mouse monoclonal antibody C-10 against Oct4 at 1:1000 dilution (Santa Cruz, sc-5279), rabbit serum against human KL


Abstract:

We developed nonintegrated methods to reprogram mouse embryonic fibroblast (MEF) cells into induced pluripotent stem cells (iPSCs) using pig pOct4, pSox2, and pc-Myc as well as human hKLF4, hAID, and hTDG that were carried by plasmid vectors. The 4F method employed pOct4, pSox2, pc-Myc, and hKLF4 to derive iPSC clones with naive embryonic stem cell (ESC)-like morphology. These 4F clones expressed endogenous mouse Nanog protein and could generate chimeras. In addition to the four conventional reprogramming factors used in the 4F method, hAID and hTDG were utilized in a 6F method to increase the conversion efficiency of reprogramming by approximately five-fold. One of the 6F plasmid derived iPSC (piPSC) clones was shown to be germline transmission competent.

Funding information:
  • NIDCR NIH HHS - R03 DE025824(United States)

Electrical maturation of neurons derived from human embryonic stem cells.

  • Telias M
  • F1000Res
  • 2014 Oct 15

Literature context: #sc-5279, RRID:AB_628051, Lot C1308


Abstract:

In-vitro neuronal differentiation of human pluripotent stem cells has become a widely used tool in disease modeling and prospective regenerative medicine. Most studies evaluate neurons molecularly and only a handful of them use electrophysiological tools to directly indicate that these are genuine neurons. Therefore, the specific timing of development of intrinsic electrophysiological properties and synaptic capabilities remains poorly understood. Here we describe a systematic analysis of developing neurons derived in-vitro from human embryonic stem cells (hESCs). We show that hESCs differentiated in-vitro into early embryonic neurons, displaying basically mature morphological and electrical features as early as day 37. This early onset of action potential discharges suggests that first stages of neurogenesis in humans are already associated with electrical maturation. Spike frequency, amplitude, duration, threshold and after hyperpolarization were found to be the most predictive parameters for electrical maturity. Furthermore, we were able to detect spontaneous synaptic activity already at these early time-points, demonstrating that neuronal connectivity can develop concomitantly with the gradual process of electrical maturation. These results highlight the functional properties of hESCs in the process of their development into neurons. Moreover, our results provide practical tools for the direct measurement of functional maturity, which can be reproduced and implemented for stem cell research of neurogenesis in general, and neurodevelopmental disorders in particular.