Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Developmental microglial priming in postmortem autism spectrum disorder temporal cortex.

Brain, behavior, and immunity | 2017

Microglia can shift into different complex morphologies depending on the microenvironment of the central nervous system (CNS). The distinct morphologies correlate with specific functions and can indicate the pathophysiological state of the CNS. Previous postmortem studies of autism spectrum disorder (ASD) showed neuroinflammation in ASD indicated by increased microglial density. These changes in the microglia density can be accompanied by changes in microglia phenotype but the individual contribution of different microglia phenotypes to the pathophysiology of ASD remains unclear. Here, we used an unbiased stereological approach to quantify six structurally and functionally distinct microglia phenotypes in postmortem human temporal cortex, which were immuno-stained with Iba1. The total density of all microglia phenotypes did not differ between ASD donors and typically developing individual donors. However, there was a significant decrease in ramified microglia in both gray matter and white matter of ASD, and a significant increase in primed microglia in gray matter of ASD compared to typically developing individuals. This increase in primed microglia showed a positive correlation with donor age in both gray matter and white of ASD, but not in typically developing individuals. Our results provide evidence of a shift in microglial phenotype that may indicate impaired synaptic plasticity and a chronic vulnerability to exaggerated immune responses.

Pubmed ID: 28159644 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti Iba1, Rabbit antibody (antibody)

RRID:AB_839504

This polyclonal targets Iba1

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

SPSS (software resource)

RRID:SCR_002865

Software package used for interactive, or batched, statistical analysis in social science, health sciences and marketing. Software platform offers advanced statistical analysis, a library of machine-learning algorithms, text analysis, open-source extensibility, integration with big data and deployment into applications.Versions that were produced by SPSS Inc. before the IBM acquisition (Versions 18 and earlier) would be given origin or publisher of SPSS Inc. in Chicago.

View all literature mentions

NICHD Brain and Tissue Bank for Developmental Disorders (brain bank)

RRID:SCR_003601

The objective of this human tissue repository is to systematically collect, store, and distribute brain and other tissues for research dedicated to the improved understanding, care, and treatment of individuals with developmental disorders. Brain sections are primarily frozen in isopentane / dry ice. Tissues are stored in 10% formalin and frozen at -85 degrees C. Of special interest are individuals with Down syndrome and other chromosomal defects, mitochondrial encephalopathies, phenylketonuria and other aminoacidopathies, maternal PKU, Rett syndrome, leukodystrophies, lysosomal disorders, dyslexia, autism, and other neurodevelopmental disorders. The brain and tissue banks have extensive experience in arranging for the rapid retrieval of tissue upon the death of individuals who die while at home, in hospitals or hospice care. As a special service, the brain and tissue banks are able to assist researchers who are working with patients who intend to donate tissues at the time of their death. Immediately after retrieval of the tissue, the brain and tissue banks will forward needed tissue to the referring investigators and ensure proper storage and cataloging of any additional tissues as part of the brain and tissue banks. The recipient of tissue and the brain and tissue banks are required to sign a Tissue Transfer Agreement before any tissues are transferred.

View all literature mentions