Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 623 papers

Ablation of nonmuscle myosin II-B and II-C reveals a role for nonmuscle myosin II in cardiac myocyte karyokinesis.

  • Xuefei Ma‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

Ablation of nonmuscle myosin (NM) II-A or NM II-B results in mouse embryonic lethality. Here, we report the results of ablating NM II-C as well as NM II-C/II-B together in mice. NM II-C ablated mice survive to adulthood and show no obvious defects compared with wild-type littermates. However, ablation of NM II-C in mice expressing only 12% of wild-type amounts of NM II-B results in a marked increase in cardiac myocyte hypertrophy compared with the NM II-B hypomorphic mice alone. In addition, these hearts develop interstitial fibrosis associated with diffuse N-cadherin and β-catenin localization at the intercalated discs, where both NM II-B and II-C are normally concentrated. When both NM II-C and II-B are ablated the B-C-/B-C- cardiac myocytes show major defects in karyokinesis. More than 90% of B-C-/B-C- myocytes demonstrate defects in chromatid segregation and mitotic spindle formation accompanied by increased stability of microtubules and abnormal formation of multiple centrosomes. This requirement for NM II in karyokinesis is further demonstrated in the HL-1 cell line derived from mouse atrial myocytes, by using small interfering RNA knockdown of NM II or treatment with the myosin inhibitor blebbistatin. Our study shows that NM II is involved in regulating cardiac myocyte karyokinesis by affecting microtubule dynamics.


Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation.

  • Yixin Ren‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system.


Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast.

  • Thomas M Huckaba‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.


Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen.

  • Léolène Jean‎ et al.
  • Journal of cell science‎
  • 2013‎

Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active β1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.


Geometric control of myosin II orientation during axis elongation.

  • Matthew F Lefebvre‎ et al.
  • eLife‎
  • 2023‎

The actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of large-scale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in Drosophila melanogaster embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II. Cell-scale analysis of protein localization in fixed embryos suggests that gene expression patterns govern myosin anisotropy via complex rules. However, technical limitations have impeded quantitative and dynamic studies of this process at the whole embryo level, leaving the role of geometry open. Here, we combine in toto live imaging with quantitative analysis of molecular dynamics to characterize the distribution of myosin anisotropy and the corresponding genetic patterning. We found pair rule gene expression continuously deformed, flowing with the tissue frame. In contrast, myosin anisotropy orientation remained approximately static and was only weakly deflected from the stationary dorsal-ventral axis of the embryo. We propose that myosin is recruited by a geometrically defined static source, potentially related to the embryo-scale epithelial tension, and account for transient deflections by cytoskeletal turnover and junction reorientation by flow. With only one parameter, this model quantitatively accounts for the time course of myosin anisotropy orientation in wild-type, twist, and even-skipped embryos, as well as embryos with perturbed egg geometry. Geometric patterning of the cytoskeleton suggests a simple physical strategy to ensure a robust flow and formation of shape.


A new role for myosin II in vesicle fission.

  • Juan A Flores‎ et al.
  • PloS one‎
  • 2014‎

An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.


Novel Interactome of Saccharomyces cerevisiae Myosin Type II Identified by a Modified Integrated Membrane Yeast Two-Hybrid (iMYTH) Screen.

  • Ednalise Santiago‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis.


The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans.

  • Naimeh Taheri-Talesh‎ et al.
  • PloS one‎
  • 2012‎

Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB (product = MyoB) and a myosin V homolog, myoE (product = MyoE). Deletions of either cause significant growth defects. MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkörper and to moving puncta in the cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the Spitzenkörper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced. Concentration of vesicles into the Spitzenkörper before incorporation into the plasma membrane is, thus, not required for hyphal growth but facilitates faster tip extension and a more normal hyphal shape.


Pentabromopseudilin: a myosin V inhibitor suppresses TGF-β activity by recruiting the type II TGF-β receptor to lysosomal degradation.

  • Wang Shih-Wei‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2018‎

Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-β (TGF-β) activity. PBrP inhibits TGF-β-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-β-induced epithelial-mesenchymal transition in epithelial cells. PBrP inhibits TGF-β signalling by reducing the cell-surface expression of type II TGF-β receptor (TβRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TβRII turnover and the subsequent reduction of TGF-β signalling. Because, TGF-β signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.


Myosin II isoforms play distinct roles in adherens junction biogenesis.

  • Mélina L Heuzé‎ et al.
  • eLife‎
  • 2019‎

Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.


Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae.

  • Jianying Luo‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p-Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p-Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.


Pharmacological activation of myosin II paralogs to correct cell mechanics defects.

  • Alexandra Surcel‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Current approaches to cancer treatment focus on targeting signal transduction pathways. Here, we develop an alternative system for targeting cell mechanics for the discovery of novel therapeutics. We designed a live-cell, high-throughput chemical screen to identify mechanical modulators. We characterized 4-hydroxyacetophenone (4-HAP), which enhances the cortical localization of the mechanoenzyme myosin II, independent of myosin heavy-chain phosphorylation, thus increasing cellular cortical tension. To shift cell mechanics, 4-HAP requires myosin II, including its full power stroke, specifically activating human myosin IIB (MYH10) and human myosin IIC (MYH14), but not human myosin IIA (MYH9). We further demonstrated that invasive pancreatic cancer cells are more deformable than normal pancreatic ductal epithelial cells, a mechanical profile that was partially corrected with 4-HAP, which also decreased the invasion and migration of these cancer cells. Overall, 4-HAP modifies nonmuscle myosin II-based cell mechanics across phylogeny and disease states and provides proof of concept that cell mechanics offer a rich drug target space, allowing for possible corrective modulation of tumor cell behavior.


Cellular defects resulting from disease-related myosin II mutations in Drosophila.

  • Karen E Kasza‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

The nonmuscle myosin II motor protein produces forces that are essential to driving the cell movements and cell shape changes that generate tissue structure. Mutations in myosin II that are associated with human diseases are predicted to disrupt critical aspects of myosin function, but the mechanisms that translate altered myosin activity into specific changes in tissue organization and physiology are not well understood. Here we use the Drosophila embryo to model human disease mutations that affect myosin motor activity. Using in vivo imaging and biophysical analysis, we show that engineering human MYH9-related disease mutations into Drosophila myosin II produces motors with altered organization and dynamics that fail to drive rapid cell movements, resulting in defects in epithelial morphogenesis. In embryos that express the Drosophila myosin motor variants R707C or N98K and have reduced levels of wild-type myosin, myosin motors are correctly planar polarized and generate anisotropic contractile tension in the tissue. However, expression of these motor variants is associated with a cellular-scale reduction in the speed of cell intercalation, resulting in a failure to promote full elongation of the body axis. In addition, these myosin motor variants display slowed turnover and aberrant aggregation at the cell cortex, indicating that mutations in the motor domain influence mesoscale properties of myosin organization and dynamics. These results demonstrate that disease-associated mutations in the myosin II motor domain disrupt specific aspects of myosin localization and activity during cell intercalation, linking molecular changes in myosin activity to defects in tissue morphogenesis.


Aurora-B phosphorylates the myosin II heavy chain to promote cytokinesis.

  • Aryeh Babkoff‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Cytokinesis, the final step of mitosis, is mediated by an actomyosin contractile ring, the formation of which is temporally and spatially regulated following anaphase onset. Aurora-B is a member of the chromosomal passenger complex, which regulates various processes during mitosis; it is not understood, however, how Aurora-B is involved in cytokinesis. Here, we show that Aurora-B and myosin-IIB form a complex in vivo during telophase. Aurora-B phosphorylates the myosin-IIB rod domain at threonine 1847 (T1847), abrogating the ability of myosin-IIB monomers to form filaments. Furthermore, phosphorylation of myosin-IIB filaments by Aurora-B also promotes filament disassembly. We show that myosin-IIB possessing a phosphomimetic mutation at T1847 was unable to rescue cytokinesis failure caused by myosin-IIB depletion. Cells expressing a phosphoresistant mutation at T1847 had significantly longer intercellular bridges, implying that Aurora-B-mediated phosphorylation of myosin-IIB is important for abscission. We propose that myosin-IIB is a substrate of Aurora-B and reveal a new mechanism of myosin-IIB regulation by Aurora-B in the late stages of mitosis.


Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers.

  • Kyle L Ellefsen‎ et al.
  • Communications biology‎
  • 2019‎

Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of "outside-in" mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.


Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during phagocytosis.

  • Daan Vorselen‎ et al.
  • eLife‎
  • 2021‎

Phagocytosis requires rapid actin reorganization and spatially controlled force generation to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity directs membrane extensions to engulf such diverse targets remains unclear. Here, we combine lattice light-sheet microscopy (LLSM) with microparticle traction force microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during macrophage phagocytosis. We show that spatially localized forces leading to target constriction are prominent during phagocytosis of antibody-opsonized targets. This constriction is largely driven by Arp2/3-mediated assembly of discrete actin protrusions containing myosin 1e and 1f ('teeth') that appear to be interconnected in a ring-like organization. Contractile myosin-II activity contributes to late-stage phagocytic force generation and progression, supporting a specific role in phagocytic cup closure. Observations of partial target eating attempts and sudden target release via a popping mechanism suggest that constriction may be critical for resolving complex in vivo target encounters. Overall, our findings present a phagocytic cup shaping mechanism that is distinct from cytoskeletal remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic plasticity.


Mechanical Load and Piezo1 Channel Regulated Myosin II Activity in Mouse Lenses.

  • Ariana Allen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The cytoarchitecture and tensile characteristics of ocular lenses play a crucial role in maintaining their transparency and deformability, respectively, which are properties required for the light focusing function of ocular lens. Calcium-dependent myosin-II-regulated contractile characteristics and mechanosensitive ion channel activities are presumed to influence lens shape change and clarity. Here, we investigated the effects of load-induced force and the activity of Piezo channels on mouse lens myosin II activity. Expression of the Piezo1 channel was evident in the mouse lens based on immunoblot and immufluorescence analyses and with the use of a Piezo1-tdT transgenic mouse model. Under ex vivo conditions, change in lens shape induced by the load decreased myosin light chain (MLC) phosphorylation. While the activation of Piezo1 by Yoda1 for one hour led to an increase in the levels of phosphorylated MLC, Yoda1 treatment for an extended period led to opacification in association with increased calpain activity and degradation of membrane proteins in ex vivo mouse lenses. In contrast, inhibition of Piezo1 by GsMTx4 decreased MLC phosphorylation but did not affect the lens tensile properties. This exploratory study reveals a role for the mechanical load and Piezo1 channel activity in the regulation of myosin II activity in lens, which could be relevant to lens shape change during accommodation.


Identification of sequence changes in myosin II that adjust muscle contraction velocity.

  • Chloe A Johnson‎ et al.
  • PLoS biology‎
  • 2021‎

The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (β/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of β-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human β-myosin to match the rat sequence. Biochemical analysis revealed that the rat-human β-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin-myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of β-myosin as species mass increased to enable a reduced contraction velocity and heart rate.


Vibrator and PI4KIIIα govern neuroblast polarity by anchoring non-muscle myosin II.

  • Chwee Tat Koe‎ et al.
  • eLife‎
  • 2018‎

A central feature of most stem cells is the ability to self-renew and undergo differentiation via asymmetric division. However, during asymmetric division the role of phosphatidylinositol (PI) lipids and their regulators is not well established. Here, we show that the sole type I PI transfer protein, Vibrator, controls asymmetric division of Drosophilaneural stem cells (NSCs) by physically anchoring myosin II regulatory light chain, Sqh, to the NSC cortex. Depletion of vib or disruption of its lipid binding and transfer activities disrupts NSC polarity. We propose that Vib stimulates PI4KIIIα to promote synthesis of a plasma membrane pool of phosphatidylinositol 4-phosphate [PI(4)P] that, in turn, binds and anchors myosin to the NSC cortex. Remarkably, Sqh also binds to PI(4)P in vitro and both Vib and Sqh mediate plasma membrane localization of PI(4)P in NSCs. Thus, reciprocal regulation between Myosin and PI(4)P likely governs asymmetric division of NSCs.


Elimination of aberrantly specified cell clones is independent of interfacial Myosin II accumulation.

  • Olga Klipa‎ et al.
  • Journal of cell science‎
  • 2023‎

Spatial organization within an organ is essential and needs to be maintained during development. This is largely implemented via compartment boundaries that serve as barriers between distinct cell types. Biased accumulation of junctional non-muscle Myosin II along the interface between differently fated groups of cells contributes to boundary integrity and maintains its shape via increased tension. Here, using the Drosophila wing imaginal disc, we tested whether interfacial tension driven by accumulation of Myosin is responsible for the elimination of aberrantly specified cells that would otherwise compromise compartment organization. To this end, we genetically reduced Myosin II levels in three different patterns: in both wild-type and misspecified cells, only in misspecified cells, and specifically at the interface between wild-type and aberrantly specified cells. We found that the recognition and elimination of aberrantly specified cells do not strictly rely on tensile forces driven by interfacial Myosin cables. Moreover, apical constriction of misspecified cells and their separation from wild-type neighbours occurred even when Myosin levels were greatly reduced. Thus, we conclude that the forces that drive elimination of aberrantly specified cells are largely independent of Myosin II accumulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: