Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,577 papers

Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.

  • Kaja Kostyrko‎ et al.
  • Nucleic acids research‎
  • 2016‎

DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.


SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair.

  • Berta N Vazquez‎ et al.
  • The EMBO journal‎
  • 2016‎

Sirtuins, a family of protein deacetylases, promote cellular homeostasis by mediating communication between cells and environment. The enzymatic activity of the mammalian sirtuin SIRT7 targets acetylated lysine in the N-terminal tail of histone H3 (H3K18Ac), thus modulating chromatin structure and transcriptional competency. SIRT7 deletion is associated with reduced lifespan in mice through unknown mechanisms. Here, we show that SirT7-knockout mice suffer from partial embryonic lethality and a progeroid-like phenotype. Consistently, SIRT7-deficient cells display increased replication stress and impaired DNA repair. SIRT7 is recruited in a PARP1-dependent manner to sites of DNA damage, where it modulates H3K18Ac levels. H3K18Ac in turn affects recruitment of the damage response factor 53BP1 to DNA double-strand breaks (DSBs), thereby influencing the efficiency of non-homologous end joining (NHEJ). These results reveal a direct role for SIRT7 in DSB repair and establish a functional link between SIRT7-mediated H3K18 deacetylation and the maintenance of genome integrity.


Regulation of DNA repair in the absence of classical non-homologous end joining.

  • Youn-Jung Kang‎ et al.
  • DNA repair‎
  • 2018‎

Classical non-homologous end-joining (cNHEJ) is the main pathway for the repair of DNA double strand breaks (DSBs) in mammalian cells. In the absence of c-NHEJ, an alternative end-joining (A-EJ) mechanism resolves DSBs. To date, no A-EJ specific factor has been identified. Instead, this mechanism appears to co-opt proteins involved in more than one DNA repair pathway. These include components of base-excision repair (PARP1/XRCC1/LIG3), interstrand cross-link repair (BRCA1/FANCD2), and DSB response/DNA end-resection (MRE11A/RAD50/RBBP8). To clarify the contribution of these factors to A-EJ, here we examined their expression and recruitment to DSBs in correlation with surrogates of cNHEJ (53BP1) and homologous recombination (RAD51) in cells deficient for the cNHEJ end-ligation component XRCC4. This revealed XRCC4-deficient cells exhibited marked increases in the stability of A-EJ transcripts that result in correspondingly elevated levels of associated proteins, in comparison to WT cells. RAD51 was also increased while 53BP1 was unaffected. Treatment with radiomimetic DSB-inducing drug doxorubicin did not influence these activities. However, FANCD2, BRCA1 and XRCC1 foci, prominently associated with 53BP1 foci and hence DSBs resolved by cNHEJ, were only detected in doxorubicin-treated XRCC4-deficient cells. Strikingly, treatment of XRCC4-deficient cells with the PARP-specific inhibitor Niraparib enhanced A-EJ, and substantially induced 53BP1 transcripts and the numbers of A-EJ-associated 53BP1 DNA damage foci. RAD51 was severely inhibited, and upstream cNHEJ (KU70/KU80/DNA-PKCs/ARTEMIS) transcripts were substantially induced. These latter results were recapitulated in BRCA1-deficient cells, which contrastingly did not affect 53BP1 or PARP1 status irrespective of doxorubicin or Niraparib treatment. Hence A-EJ is regulated transcriptionally, reduced by a higher turnover rate in cNHEJ-proficient cells and sustained but fine-tuned by PARP1 in XRCC4-deficient cells to promote DNA repair and survival. Upstream cNHEJ components are similarly transcriptionally down-modulated by PARP1 and BRCA1 in a manner inversely correlated with HR and mechanistically distinct from A-EJ respectively in cNHEJ-deficient and cNHEJ-proficient settings.


ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining.

  • Sara Nicolai‎ et al.
  • Oncogene‎
  • 2020‎

Efficient repair of DNA double-strand breaks (DSBs) is of critical importance for cell survival. Although non-homologous end joining (NHEJ) is the most used DSBs repair pathway in the cells, how NHEJ factors are sequentially recruited to damaged chromatin remains unclear. Here, we identify a novel role for the zinc-finger protein ZNF281 in participating in the ordered recruitment of the NHEJ repair factor XRCC4 at damage sites. ZNF281 is recruited to DNA lesions within seconds after DNA damage through a mechanism dependent on its DNA binding domain and, at least in part, on poly-ADP ribose polymerase (PARP) activity. ZNF281 binds XRCC4 through its zinc-finger domain and facilitates its recruitment to damaged sites. Consequently, depletion of ZNF281 impairs the efficiency of the NHEJ repair pathway and decreases cell viability upon DNA damage. Survival analyses from datasets of commonly occurring human cancers show that higher levels of ZNF281 correlate with poor prognosis of patients treated with DNA-damaging therapies. Thus, our results define a late ZNF281-dependent regulatory step of NHEJ complex assembly at DNA lesions and suggest additional possibilities for cancer patients' stratification and for the development of personalised therapeutic strategies.


DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining.

  • Sean M Howard‎ et al.
  • PLoS genetics‎
  • 2015‎

Alternative end joining (Alt-EJ) chromosomal break repair involves bypassing classical non-homologous end joining (c-NHEJ), and such repair causes mutations often with microhomology at the repair junction. Since the mediators of Alt-EJ are not well understood, we have sought to identify DNA damage response (DDR) factors important for this repair event. Using chromosomal break reporter assays, we surveyed an RNAi library targeting known DDR factors for siRNAs that cause a specific decrease in Alt-EJ, relative to an EJ event that is a composite of Alt-EJ and c-NHEJ (Distal-EJ between two tandem breaks). From this analysis, we identified several DDR factors that are specifically important for Alt-EJ relative to Distal-EJ. While these factors are from diverse pathways, we also found that most of them also promote homologous recombination (HR), including factors important for DNA crosslink repair, such as the Fanconi Anemia factor, FANCA. Since bypass of c-NHEJ is likely important for both Alt-EJ and HR, we disrupted the c-NHEJ factor Ku70 in Fanca-deficient mouse cells and found that Ku70 loss significantly diminishes the influence of Fanca on Alt-EJ. In contrast, an inhibitor of poly ADP-ribose polymerase (PARP) causes a decrease in Alt-EJ that is enhanced by Ku70 loss. Additionally, the helicase/nuclease DNA2 appears to have distinct effects from FANCA and PARP on both Alt-EJ, as well as end resection. Finally, we found that the proteasome inhibitor Bortezomib, a cancer therapeutic that has been shown to disrupt FANC signaling, causes a significant reduction in both Alt-EJ and HR, relative to Distal-EJ, as well as a substantial loss of end resection. We suggest that several distinct DDR functions are important for Alt-EJ, which include promoting bypass of c-NHEJ and end resection.


SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining.

  • Ekaterina Akimova‎ et al.
  • Nucleic acids research‎
  • 2021‎

Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.


Inhibition of nonhomologous end joining-mediated DNA repair enhances anti-HBV CRISPR therapy.

  • Kazuhiro Murai‎ et al.
  • Hepatology communications‎
  • 2022‎

Current anti-hepatitis B virus (HBV) therapies have little effect on covalently closed circular DNA (cccDNA) and fail to eliminate HBV. The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been reported to directly target cccDNA and exert antiviral effects. In this study, we hypothesized that the inhibition of the DNA repair machinery, which is important for the repair of CRISPR-induced double-strand breaks, may enhance the effect of CRISPR targeting cccDNA, and we investigated the antiviral effect of potential combination therapy. The antiviral effect of CRISPR targeting cccDNA (HBV-CRISPR) was evaluated in HBV-susceptible HepG2-hNTCP-C4 cells expressing Cas9 (HepG2-hNTCP-C4-iCas9) or primary human hepatocytes (PHHs) expressing Cas9. Following HBV infection, HBV-CRISPR reduced cccDNA levels, accompanied by decreases in pregenomic RNA (pgRNA) levels and supernatant HBV DNA, hepatitis B surface antigen and hepatitis B e antigen levels in HepG2-hNTCP-C4-iCas9 cells, and PHHs. HBV-CRISPR induced indel formation in cccDNA and up-regulated poly(adenosine diphosphate ribose) polymerase (PARP) activity in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of PARP2-Histone PARylation factor 1 (HPF1) (involved in the initial step of DNA repair) with small interfering RNA (siRNA) targeting either PARP2 or HPF1 increased the reduction in pgRNA and cccDNA by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of DNA Ligase 4 (LIG4) (essential for nonhomologous end joining [NHEJ]) but not breast cancer susceptibility gene (BRCA) (essential for homologous recombination) enhanced the antiviral effect of HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. Finally, the clinically available PARP inhibitor olaparib increased the reductions in pgRNA and cccDNA levels induced by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells and PHHs. Conclusion: The suppression of the NHEJ-mediated DNA repair machinery enhances the effect of CRISPR targeting cccDNA. The combination of CRISPR and olaparib may represent a therapy for HBV elimination.


ELL2 regulates DNA non-homologous end joining (NHEJ) repair in prostate cancer cells.

  • Yachen Zang‎ et al.
  • Cancer letters‎
  • 2018‎

ELL2 is an androgen-responsive gene that is expressed by prostate epithelial cells and is frequently down-regulated in prostate cancer. Deletion of Ell2 in the murine prostate induced murine prostatic intraepithelial neoplasia and ELL2 knockdown enhanced proliferation and migration in C4-2 prostate cancer cells. Here, knockdown of ELL2 sensitized prostate cancer cells to DNA damage and overexpression of ELL2 protected prostate cancer cells from DNA damage. Knockdown of ELL2 impaired non-homologous end joining repair but not homologous recombination repair. Transfected ELL2 co-immunoprecipitated with both Ku70 and Ku80 proteins. ELL2 could bind to and co-accumulate with Ku70/Ku80 proteins at sites of DNA damage. Knockdown of ELL2 dramatically inhibited Ku70 and Ku80 recruitment and retention at DNA double-strand break sites in prostate cancer cells. The impaired recruitment of Ku70 and Ku80 proteins to DNA damage sites upon ELL2 knockdown was rescued by re-expression of an ELL2 transgene insensitive to siELL2. This study suggests that ELL2 is required for efficient NHEJ repair via Ku70/Ku80 in prostate cancer cells.


Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining.

  • Paola L García-Medel‎ et al.
  • Nucleic acids research‎
  • 2019‎

Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.


Emerging models for DNA repair: Dictyostelium discoideum as a model for nonhomologous end-joining.

  • Catherine J Pears‎ et al.
  • DNA repair‎
  • 2014‎

DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ.


Cleavage of Ku80 by caspase-2 promotes non-homologous end joining-mediated DNA repair.

  • Qiongyu Yan‎ et al.
  • DNA repair‎
  • 2017‎

Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.


Short-term calorie restriction enhances DNA repair by non-homologous end joining in mice.

  • Zhonghe Ke‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2020‎

Calorie restriction (CR) improves health, reduces cancer incidence and extends lifespan in multiple organisms including mice. CR was shown to enhance base excision repair and nucleotide excision repair pathways of DNA repair, however, whether CR improves repair of DNA double-strand breaks has not been examined in in vivo system. Here we utilize non-homologous end joining (NHEJ) reporter mice to show that short-term CR strongly enhances DNA repair by NHEJ, which is associated with elevated levels of DNA-PK and SIRT6.


Deletion of yeast TPK1 reduces the efficiency of non-homologous end joining DNA repair.

  • Mohsen Hooshyar‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Non-homologous end joining (NHEJ) is a highly conserved mechanism of DNA double-stranded break (DSB) repair. Here we utilize a computational protein-protein interaction method to identify human PRKACB as a potential candidate interacting with NHEJ proteins. We show that the deletion of its yeast homolog, TPK1 that codes for the protein kinase A catalytic subunit reduces the efficiency of NHEJ repair of breaks with overhangs and blunt ends in plasmid-based repair assays. Additionally, tpk1Δ mutants showed defects in the repair of chromosomal breaks induced by HO-site specific endonuclease. Our double deletion mutant analyses suggest that TPK1 and YKU80, a key player in NHEJ could function in parallel pathways. Altogether, here we report a novel involvement for TPK1 in NHEJ.


Polθ promotes the repair of 5'-DNA-protein crosslinks by microhomology-mediated end-joining.

  • Gurushankar Chandramouly‎ et al.
  • Cell reports‎
  • 2021‎

DNA polymerase θ (Polθ) confers resistance to chemotherapy agents that cause DNA-protein crosslinks (DPCs) at double-strand breaks (DSBs), such as topoisomerase inhibitors. This suggests Polθ might facilitate DPC repair by microhomology-mediated end-joining (MMEJ). Here, we investigate Polθ repair of DSBs carrying DPCs by monitoring MMEJ in Xenopus egg extracts. MMEJ in extracts is dependent on Polθ, exhibits the MMEJ repair signature, and efficiently repairs 5' terminal DPCs independently of non-homologous end-joining and the replisome. We demonstrate that Polθ promotes the repair of 5' terminal DPCs in mammalian cells by using an MMEJ reporter and find that Polθ confers resistance to formaldehyde in addition to topoisomerase inhibitors. Dual deficiency in Polθ and tyrosyl-DNA phosphodiesterase 2 (TDP2) causes severe cellular sensitivity to etoposide, which demonstrates MMEJ as an independent DPC repair pathway. These studies recapitulate MMEJ in vitro and elucidate how Polθ confers resistance to etoposide.


Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining.

  • Rebecca Cook‎ et al.
  • Cell reports‎
  • 2015‎

Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1's cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.


Nuclear TRADD prevents DNA damage-mediated death by facilitating non-homologous end-joining repair.

  • Gi-Bang Koo‎ et al.
  • Scientific reports‎
  • 2017‎

TNF receptor-associated death domain (TRADD) is an essential mediator of TNF receptor signaling, and serves as an adaptor to recruit other effectors. TRADD has been shown to cycle between the cytoplasm and nucleus due to its nuclear localization (NLS) and export sequences (NES). However, the underlying function of nuclear TRADD is poorly understood. Here we demonstrate that cytoplasmic TRADD translocates to DNA double-strand break sites (DSBs) during the DNA damage response (DDR). Deficiency of TRADD or its sequestration in cytosol leads to accumulation of γH2AX-positive foci in response to DNA damage, which is reversed by nuclear TRADD expression. TRADD facilitates non-homologous end-joining (NHEJ) by recruiting NHEJ repair factors 53BP1 and Ku70/80 complex, whereas TRADD is dispensable for homologous recombination (HR) repair. Finally, an impaired nuclear localization of TRADD triggers cell death through the persistent activation of JNK and accumulation of reactive oxygen species (ROS). Thus, our findings suggest that translocation of TRADD to DSBs into the nucleus contributes to cell survival in response to DNA damage through an activation of DNA damage repair.


DNA polymerase beta participates in DNA End-joining.

  • Sreerupa Ray‎ et al.
  • Nucleic acids research‎
  • 2018‎

DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aNHEJ), which joins ends but results in deletions and insertions. NHEJ requires processing enzymes including nucleases and polymerases, although the roles of these enzymes are poorly understood. Emerging evidence indicates that X family DNA polymerases lambda (Pol λ) and mu (Pol μ) promote DNA end-joining. Here, we show that DNA polymerase beta (Pol β), another member of the X family of DNA polymerases, plays a role in aNHEJ. In the absence of DNA Pol β, fewer small deletions are observed. In addition, depletion of Pol β results in cellular sensitivity to bleomycin and DNA protein kinase catalytic subunit inhibitors due to defective repair of DSBs. In summary, our results indicate that Pol β in functions in aNHEJ and provide mechanistic insight into its role in this process.


Double Strand Break DNA Repair occurs via Non-Homologous End-Joining in Mouse MII Oocytes.

  • Jacinta H Martin‎ et al.
  • Scientific reports‎
  • 2018‎

The unique biology of the oocyte means that accepted paradigms for DNA repair and protection are not of direct relevance to the female gamete. Instead, preservation of the integrity of the maternal genome depends on endogenous protein stores and/or mRNA transcripts accumulated during oogenesis. The aim of this study was to determine whether mature (MII) oocytes have the capacity to detect DNA damage and subsequently mount effective repair. For this purpose, DNA double strand breaks (DSB) were elicited using the topoisomerase II inhibitor, etoposide (ETP). ETP challenge led to a rapid and significant increase in DSB (P = 0.0002) and the consequential incidence of metaphase plate abnormalities (P = 0.0031). Despite this, ETP-treated MII oocytes retained their ability to participate in in vitro fertilisation, though displayed reduced developmental competence beyond the 2-cell stage (P = 0.02). To account for these findings, we analysed the efficacy of DSB resolution, revealing a significant reduction in DSB lesions 4 h post-ETP treatment. Notably, this response was completely abrogated by pharmacological inhibition of key elements (DNA-PKcs and DNA ligase IV) of the canonical non-homologous end joining DNA repair pathway, thus providing the first evidence implicating this reparative cascade in the protection of the maternal genome.


Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining.

  • Takashi Ochi‎ et al.
  • Journal of nucleic acids‎
  • 2010‎

Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere.


Non-homologous end joining repair in Xenopus egg extract.

  • Songli Zhu‎ et al.
  • Scientific reports‎
  • 2016‎

Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair mechanism. We characterized here a series of plasmid-based DSB templates that were repaired in Xenopus egg extracts via the canonical, Ku-dependent NHEJ pathway. We showed that the template with compatible ends was efficiently repaired without end processing, in a manner that required the kinase activity of DNA-PKcs but not ATM. Moreover, non-compatible ends with blunt/3'-overhang, blunt/5'-overhang, and 3'-overhang/5'-overhang were predominantly repaired with fill-in and ligation without the removal of end nucleotides. In contrast, 3'-overhang/3'-overhang and 5'-overhang/5'-overhang templates were processed by resection of 3-5 bases and fill-in of 1-4 bases prior to end ligation. Therefore, the NHEJ machinery exhibited a strong preference for precise repair; the presence of neither non-compatible ends nor protruding single strand DNA sufficiently warranted the action of nucleases. ATM was required for the efficient repair of all non-compatible ends including those repaired without end processing by nucleases, suggesting its role beyond phosphorylation and regulation of Artemis. Finally, dephosphorylation of the 5'-overhang/3'-overhang template reduced the efficiency of DNA repair without increasing the risk of end resection, indicating that end protection via prompt end ligation is not the sole mechanism that suppresses the action of nucleases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: