Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection.

  • Shen-Ying Zhang‎ et al.
  • Cell‎
  • 2018‎

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Classical homocystinuria: A common inborn error of metabolism? An epidemiological study based on genetic databases.

  • Giovana R Weber Hoss‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Biallelic pathogenic variants in CBS gene cause the most common form of homocystinuria, the classical homocystinuria (HCU). The worldwide prevalence of HCU is estimated to be 0.82:100,000 [95% CI, 0.39-1.73:100,000] according to clinical records and 1.09:100,000 [95% CI, 0.34-3.55:100,000] by neonatal screening. In this study, we aimed to estimate the minimal worldwide incidence of HCU.


Neonatal seizures as onset of Inborn Errors of Metabolism (IEMs): from diagnosis to treatment. A systematic review.

  • Raffaele Falsaperla‎ et al.
  • Metabolic brain disease‎
  • 2021‎

Neonatal seizures (NS) occur in the first 28 days of life; they represent an important emergency that requires a rapid diagnostic work-up to start a prompt therapy. The most common causes of NS include: intraventricular haemorrhage, hypoxic-ischemic encephalopathy, hypoglycemia, electrolyte imbalance, neonatal stroke or central nervous system infection. Nevertheless, an Inborn Error of Metabolism (IEM) should be suspected in case of NS especially if these are resistant to common antiseizure drugs (ASDs) and with metabolic decompensation. Nowadays, Expanded Newborn Screening (ENS) has changed the natural history of some IEMs allowing a rapid diagnosis and a prompt onset of specific therapy; nevertheless, not all IEMs are detected by such screening (e.g. Molybdenum-Cofactor Deficiency, Hypophosphatasia, GLUT1-Deficiency Syndrome) and for this reason neonatologists have to screen for these diseases in the diagnostic work-up of NS. For IEMs, there are not specific semiology of seizures and EEG patterns. Herein, we report a systematic review on those IEMs that lead to NS and epilepsy in the neonatal period, studying only those IEMs not included in the ENS with tandem mass, suggesting clinical, biochemical features, and diagnostic work-up. Remarkably, we have observed a worse neurological outcome in infants undergoing only a treatment with common AED for their seizures, in comparison to those primarily treated with specific anti-convulsant treatment for the underlying metabolic disease (e.g.Ketogenic Diet, B6 vitamin). For this reason, we underline the importance of an early diagnosis in order to promptly intervene with a targeted treatment without waiting for drug resistance to arise.


Recommendations for patient screening in ultra-rare inherited metabolic diseases: what have we learned from Niemann-Pick disease type C?

  • María-Jesús Sobrido‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Rare and ultra-rare diseases (URDs) are often chronic and life-threatening conditions that have a profound impact on sufferers and their families, but many are notoriously difficult to detect. Niemann-Pick disease type C (NP-C) serves to illustrate the challenges, benefits and pitfalls associated with screening for ultra-rare inborn errors of metabolism (IEMs). A comprehensive, non-systematic review of published information from NP-C screening studies was conducted, focusing on diagnostic methods and study designs that have been employed to date. As a key part of this analysis, data from both successful studies (where cases were positively identified) and unsuccessful studies (where the chosen approach failed to identify any cases) were included alongside information from our own experiences gained from the planning and execution of screening for NP-C. On this basis, best-practice recommendations for ultra-rare IEM screening are provided. Twenty-six published screening studies were identified and categorised according to study design into four groups: 1) prospective patient cohort and family-based secondary screenings (18 studies); 2) analyses of archived 'biobank' materials (one study); 3) medical chart review and bioinformatics data mining (five studies); and 4) newborn screening (two studies). NPC1/NPC2 sequencing was the most common primary screening method (Sanger sequencing in eight studies and next-generation sequencing [gene panel or exome sequencing] in five studies), followed by biomarker analyses (usually oxysterols) and clinical surveillance.


Use of a neuron-glia genome-scale metabolic reconstruction to model the metabolic consequences of the Arylsulphatase a deficiency through a systems biology approach.

  • Olga Y Echeverri-Peña‎ et al.
  • Heliyon‎
  • 2021‎

Metachromatic leukodystrophy (MLD) is a human neurodegenerative disorder characterized by progressive damage on the myelin band in the nervous system. MLD is caused by the impaired function of the lysosomal enzyme Arylsulphatase A (ARSA). The physiopathology mechanisms and the biochemical consequences in the brain of ARSA deficiency are not entirely understood. In recent years, the use of genome-scale metabolic (GEM) models has been explored as a tool for the study of the biochemical alterations in MLD. Previously, we modeled the metabolic consequences of different lysosomal storage diseases using single GEMs. In the case of MLD, using a glia GEM, we previously predicted that the metabolism of glycosphingolipids and neurotransmitters was altered. The results also suggested that mitochondrial metabolism and amino acid transport were the main reactions affected. In this study, we extended the modeling of the metabolic consequences of ARSA deficiency through the integration of neuron and glial cell metabolic models. Cell-specific models were generated from Recon2, and these were used to create a neuron-glial bi-cellular model. We propose a workflow for the integration of this type of model and its subsequent study. The results predicted the impairment pathways involved in the transport of amino acids, lipids metabolism, and catabolism of purines and pyrimidines. The use of this neuron-glial GEM metabolic reconstruction allowed to improve the prediction capacity of the metabolic consequences of ARSA deficiency, which might pave the way for the modeling of the biochemical alterations of other inborn errors of metabolism with central nervous system involvement.


Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

  • Gerarda Cappuccio‎ et al.
  • PloS one‎
  • 2017‎

Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.


Engineering new metabolic pathways in isolated cells for the degradation of guanidinoacetic acid and simultaneous production of creatine.

  • Marzia Bianchi‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2022‎

Here we report, for the first time, the engineering of human red blood cells (RBCs) with an entire metabolic pathway as a potential strategy to treat patients with guanidinoacetate methyltransferase (GAMT) deficiency, capable of reducing the high toxic levels of guanidinoacetate acid (GAA) and restoring proper creatine levels in blood and tissues. We first produced a recombinant form of native human GAMT without any tags to encapsulate into RBCs. Due to the poor solubility and stability features of the recombinant enzyme, both bioinformatics studies and extensive optimization work were performed to select a mutant GAMT enzyme, where only four critical residues were replaced, as a lead candidate. However, GAMT-loaded RBCs were ineffective in GAA consumption and creatine production because of the limiting intra-erythrocytic S-adenosyl methionine (SAM) content unable to support GAMT activity. Therefore, a recombinant form of human methionine adenosyl transferase (MAT) was developed. RBCs co-entrapped with both GAMT and MAT enzymes performed, in vitro, as a competent cellular bioreactor to remove GAA and produce creatine, fueled by physiological concentrations of methionine and the ATP generated by glycolysis. Our results highlight that metabolic engineering of RBCs is possible and represents proof of concept for the design of novel therapeutic approaches.


Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes.

  • Laura Giusti‎ et al.
  • Neuroscience‎
  • 2019‎

Creatine (Cr) is a small metabolite with a central role in energy metabolism and mitochondrial function. Creatine deficiency syndromes are inborn errors of Cr metabolism causing Cr depletion in all body tissues and particularly in the nervous system. Patient symptoms involve intellectual disability, language and behavioral disturbances, seizures and movement disorders suggesting that brain cells are particularly sensitive to Cr depletion. Cr deficiency was found to affect metabolic activity and structural abnormalities of mitochondrial organelles; however a detailed analysis of molecular mechanisms linking Cr deficit, energy metabolism alterations and brain dysfunction is still missing. Using a proteomic approach we evaluated the proteome changes of the brain mitochondrial fraction induced by the deletion of the Cr transporter (CrT) in developing mutant mice. We found a marked alteration of the mitochondrial proteomic landscape in the brain of CrT deficient mice, with the overexpression of many proteins involved in energy metabolism and response to oxidative stress. Moreover, our data suggest possible abnormalities of dendritic spines, synaptic function and plasticity, network excitability and neuroinflammatory response. Intriguingly, the alterations occurred in coincidence with the developmental onset of neurological symptoms. Thus, cerebral mitochondrial alterations could represent an early response to Cr deficiency that could be targeted for therapeutic intervention.


How to proceed after "negative" exome: A review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques.

  • Saskia B Wortmann‎ et al.
  • Journal of inherited metabolic disease‎
  • 2022‎

Exome sequencing (ES) in the clinical setting of inborn metabolic diseases (IMDs) has created tremendous improvement in achieving an accurate and timely molecular diagnosis for a greater number of patients, but it still leaves the majority of patients without a diagnosis. In parallel, (personalized) treatment strategies are increasingly available, but this requires the availability of a molecular diagnosis. IMDs comprise an expanding field with the ongoing identification of novel disease genes and the recognition of multiple inheritance patterns, mosaicism, variable penetrance, and expressivity for known disease genes. The analysis of trio ES is preferred over singleton ES as information on the allelic origin (paternal, maternal, "de novo") reduces the number of variants that require interpretation. All ES data and interpretation strategies should be exploited including CNV and mitochondrial DNA analysis. The constant advancements in available techniques and knowledge necessitate the close exchange of clinicians and molecular geneticists about genotypes and phenotypes, as well as knowledge of the challenges and pitfalls of ES to initiate proper further diagnostic steps. Functional analyses (transcriptomics, proteomics, and metabolomics) can be applied to characterize and validate the impact of identified variants, or to guide the genomic search for a diagnosis in unsolved cases. Future diagnostic techniques (genome sequencing [GS], optical genome mapping, long-read sequencing, and epigenetic profiling) will further enhance the diagnostic yield. We provide an overview of the challenges and limitations inherent to ES followed by an outline of solutions and a clinical checklist, focused on establishing a diagnosis to eventually achieve (personalized) treatment.


C26:0-Carnitine Is a New Biomarker for X-Linked Adrenoleukodystrophy in Mice and Man.

  • Malu-Clair van de Beek‎ et al.
  • PloS one‎
  • 2016‎

X-linked adrenoleukodystrophy (ALD), a progressive neurodegenerative disease, is caused by mutations in ABCD1 and characterized by very-long-chain fatty acids (VLCFA) accumulation. Virtually all males develop progressive myelopathy (AMN). A subset of patients, however, develops a fatal cerebral demyelinating disease (cerebral ALD). Hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. Unfortunately, this narrow therapeutic window is often missed. Therefore, an increasing number of newborn screening programs are including ALD. To identify new biomarkers for ALD, we developed an Abcd1 knockout mouse with enhanced VLCFA synthesis either ubiquitous or restricted to oligodendrocytes. Biochemical analysis revealed VLCFA accumulation in different lipid classes and acylcarnitines. Both C26:0-lysoPC and C26:0-carnitine were highly elevated in brain, spinal cord, but also in bloodspots. We extended the analysis to patients and confirmed that C26:0-carnitine is also elevated in bloodspots from ALD patients. We anticipate that validation of C26:0-carnitine for the diagnosis of ALD in newborn bloodspots may lead to a faster inclusion of ALD in newborn screening programs in countries that already screen for other inborn errors of metabolism.


Gray and white matter are both affected in classical galactosemia: An explorative study on the association between neuroimaging and clinical outcome.

  • Mendy M Welsink-Karssies‎ et al.
  • Molecular genetics and metabolism‎
  • 2020‎

Classical Galactosemia (CG) is an inherited disorder of galactose metabolism caused by a deficiency of the galactose-1-phosphate uridylyltransferase (GALT) enzyme resulting in neurocognitive complications. As in many Inborn Errors of Metabolism, the metabolic pathway of CG is well-defined, but the pathophysiology and high variability in clinical outcome are poorly understood. The aim of this study was to investigate structural changes of the brain of CG patients on MRI and their association with clinical outcome.


The complete European guidelines on phenylketonuria: diagnosis and treatment.

  • A M J van Wegberg‎ et al.
  • Orphanet journal of rare diseases‎
  • 2017‎

Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. If left untreated, PKU results in increased phenylalanine concentrations in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. PKU management differs widely across Europe and therefore these guidelines have been developed aiming to optimize and standardize PKU care. Professionals from 10 different European countries developed the guidelines according to the AGREE (Appraisal of Guidelines for Research and Evaluation) method. Literature search, critical appraisal and evidence grading were conducted according to the SIGN (Scottish Intercollegiate Guidelines Network) method. The Delphi-method was used when there was no or little evidence available. External consultants reviewed the guidelines. Using these methods 70 statements were formulated based on the highest quality evidence available. The level of evidence of most recommendations is C or D. Although study designs and patient numbers are sub-optimal, many statements are convincing, important and relevant. In addition, knowledge gaps are identified which require further research in order to direct better care for the future.


Heterogenous Clinical Landscape in a Consanguineous Malonic Aciduria Family.

  • Sarah Snanoudj‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Malonic aciduria is an extremely rare inborn error of metabolism due to malonyl-CoA decarboxylase deficiency. This enzyme is encoded by the MLYCD (Malonyl-CoA Decarboxylase) gene, and the disease has an autosomal recessive inheritance. Malonic aciduria is characterized by systemic clinical involvement, including neurologic and digestive symptoms, metabolic acidosis, hypoglycemia, failure to thrive, seizures, developmental delay, and cardiomyopathy. We describe here two index cases belonging to the same family that, despite an identical genotype, present very different clinical pictures. The first case is a boy with neonatal metabolic symptoms, abnormal brain MRI, and dilated cardiomyopathy. The second case, the cousin of the first patient in a consanguineous family, showed later symptoms, mainly with developmental delay. Both patients showed high levels of malonylcarnitine on acylcarnitine profiles and malonic acid on urinary organic acid chromatographies. The same homozygous pathogenic variant was identified, c.346C > T; p. (Gln116*). We also provide a comprehensive literature review of reported cases. A review of the literature yielded 52 cases described since 1984. The most common signs were developmental delay and cardiomyopathy. Increased levels of malonic acid and malonylcarnitine were constant. Presentations ranged from neonatal death to patients surviving past adolescence. These two cases and reported patients in the literature highlight the inter- and intrafamilial variability of malonic aciduria.


Enantiomer-specific pharmacokinetics of D,L-3-hydroxybutyrate: Implications for the treatment of multiple acyl-CoA dehydrogenase deficiency.

  • Willemijn J van Rijt‎ et al.
  • Journal of inherited metabolic disease‎
  • 2021‎

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Parkinsonisms and Glucocerebrosidase Deficiency: A Comprehensive Review for Molecular and Cellular Mechanism of Glucocerebrosidase Deficiency.

  • Emilia M Gatto‎ et al.
  • Brain sciences‎
  • 2019‎

In the last years, lysosomal storage diseases appear as a bridge of knowledge between rare genetic inborn metabolic disorders and neurodegenerative diseases such as Parkinson's disease (PD) or frontotemporal dementia. Epidemiological studies helped promote research in the field that continues to improve our understanding of the link between mutations in the glucocerebrosidase (GBA) gene and PD. We conducted a review of this link, highlighting the association in GBA mutation carriers and in Gaucher disease type 1 patients (GD type 1). A comprehensive review of the literature from January 2008 to December 2018 was undertaken. Relevance findings include: (1) There is a bidirectional interaction between GBA and α- synuclein in protein homeostasis regulatory pathways involving the clearance of aggregated proteins. (2) The link between GBA deficiency and PD appears not to be restricted to α⁻synuclein aggregates but also involves Parkin and PINK1 mutations. (3) Other factors help explain this association, including early and later endosomes and the lysosomal-associated membrane protein 2A (LAMP-2A) involved in the chaperone-mediated autophagy (CMA). (4) The best knowledge allows researchers to explore new therapeutic pathways alongside substrate reduction or enzyme replacement therapies.


Sjögren-Larsson syndrome: The mild end of the phenotypic spectrum.

  • Pippa Staps‎ et al.
  • JIMD reports‎
  • 2020‎

Sjögren-Larsson syndrome (SLS) is a rare inborn error of lipid metabolism. The syndrome is caused by mutations in the ALDH3A2 gene, resulting in a deficiency of fatty aldehyde dehydrogenase. Most patients have a clearly recognizable severe phenotype, with congenital ichthyosis, intellectual disability, and spastic diplegia. In this study, we describe two patients with a remarkably mild phenotype. In both patients, males with actual ages of 45 and 61 years, the diagnosis was only established at an adult age. Their skin had been moderately affected from childhood onward, and both men remained ambulant with mild spasticity of their legs. Cognitive development, as reflected by school performance and professional career, had been unremarkable. Magnetic resonance spectroscopy of the first patient was lacking the characteristic lipid peak. We performed a literature search to identify additional SLS patients with a mild phenotype. We compared the clinical, radiologic, and molecular features of the mildly affected patients with the classical phenotype. We found 10 cases in the literature with a molecular proven diagnosis and a mild phenotype. Neither a genotype-phenotype correlation nor an alternative explanation for the strikingly mild phenotypes was found. New biochemical techniques to study the underlying metabolic defect in SLS, like lipidomics, may in the future help to unravel the reasons for the exceptionally mild phenotypes. In the meantime, it is important to recognize these mildly affected patients to provide them with appropriate care and genetic counseling, and to increase our insights in the true disease spectrum of SLS.


High-dose hydroxocobalamin achieves biochemical correction and improvement of neuropsychiatric deficits in adults with late onset cobalamin C deficiency.

  • Tomoyasu Higashimoto‎ et al.
  • JIMD reports‎
  • 2020‎

Cobalamin C (cblC) deficiency is the most common inborn error of intracellular cobalamin metabolism caused by pathogenic variant(s) in MMACHC and manifests with methylmalonic acidemia, hyperhomocysteinemia, and hypomethioninemia with a variable age of presentation. Individuals with late-onset cblC may be asymptomatic until manifesting neuropsychiatric symptoms, thromboembolic events, and renal disease. Although hydroxocobalamin provides a foundation for therapy, optimal dose regimen for adult patients has not been systematically evaluated. We report three adult siblings with late-onset cblC disease, and their biochemical and clinical responses to high-dose hydroxocobalamin. The 28-year-old proband presented with severe psychosis, progressive neurological deterioration, and deep venous thrombosis complicated by a pulmonary embolism. MRI studies identified lesions in the spinal cord, periventricular white matter, and basal ganglia. Serum homocysteine and methylmalonic acid levels were markedly elevated. Hydroxocobalamin at standard dose (1 mg/day) initially resulted in partial metabolic correction. A regimen of high-dose hydroxocobalamin (25 mg/day) together with betaine and folic acid resulted in rapid and sustainable biochemical correction, resolution of psychosis, improvement of neurological functions, and amelioration of brain and spinal cord lesions. Two siblings who did not manifest neuropsychiatric symptoms or thromboembolism achieved a satisfactory metabolic control with the same high-dose regimen. Hydroxocobalamin injection was then spaced out to 25 mg weekly with good and sustainable metabolic control. All three patients are compound heterozygotes for c.271dupA p.Arg91LysfsX14 and c.389A > G p.Tyr130Cys. This study highlights the importance of evaluating intracellular cobalamin metabolism in adults with neuropsychiatric manifestations and/or thromboembolic events, and demonstrates that high-dose hydroxocobalamin achieves rapid and sustainable metabolic control and improvement in neuropsychiatric outcomes in adults with late-onset cblC disease.


Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies.

  • Thomas Opladen‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH4 deficiencies.


Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B6-Dependent Epilepsy.

  • Niklas Darin‎ et al.
  • American journal of human genetics‎
  • 2016‎

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder.

  • Peter Huppke‎ et al.
  • Nature communications‎
  • 2017‎

Transcription factor NRF2, encoded by NFE2L2, is the master regulator of defense against stress in mammalian cells. Somatic mutations of NFE2L2 leading to NRF2 accumulation promote cell survival and drug resistance in cancer cells. Here we show that the same mutations as inborn de novo mutations cause an early onset multisystem disorder with failure to thrive, immunodeficiency and neurological symptoms. NRF2 accumulation leads to widespread misregulation of gene expression and an imbalance in cytosolic redox balance. The unique combination of white matter lesions, hypohomocysteinaemia and increased G-6-P-dehydrogenase activity will facilitate early diagnosis and therapeutic intervention of this novel disorder.The NRF2 transcription factor regulates the response to stress in mammalian cells. Here, the authors show that activating mutations in NRF2, commonly found in cancer cells, are found in four patients with a multisystem disorder characterized by immunodeficiency and neurological symptoms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: