Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 276 papers

Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits.

  • T A Griffin‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

LMP2, LMP7, and MECL are interferon gamma-inducible catalytic subunits of vertebrate 20S proteasomes, which can replace constitutive catalytic subunits (delta, X, and Z, respectively) during proteasome biogenesis. We demonstrate that MECL requires LMP2 for efficient incorporation into preproteasomes, and preproteasomes containing LMP2 and MECL require LMP7 for efficient maturation. The latter effect depends on the presequence of LMP7, but not on LMP7 catalytic activity. This cooperative mechanism favors the assembly of homogeneous "immunoproteasomes" containing all three inducible subunits, suggesting that these subunits act in concert to enhance proteasomal generation of major histocompatibility complex class I-binding peptides.


Gamma delta T cells provide an early source of interferon gamma in tumor immunity.

  • Yunfei Gao‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Interferon (IFN)-gamma is necessary for tumor immunity, however, its initial cellular source is unknown. Because gammadelta T cells primarily produce this cytokine upon activation, we hypothesized that they would provide an important early source of IFN-gamma in tumor immunosurveillance. To address this hypothesis, we first demonstrated that gammadelta T cell-deficient mice had a significantly higher incidence of tumor development after challenge with a chemical carcinogen methylcholanthrene (MCA) or inoculation with the melanoma cell line B16. In wild-type mice, gammadelta T cells were recruited to the site of tumor as early as day 3 after inoculation, followed by alphabeta T cells at day 5. We then used bone marrow chimeras and fetal liver reconstitutions to create mice with an intact gammadelta T cell repertoire but one that was specifically deficient in the capacity to produce IFN-gamma. Such mice had a higher incidence of tumor development, induced either with MCA or by inoculation of B16 melanoma cells, compared with mice with IFN-gamma-competent gammadelta T cells. Moreover, genetic deficiency of gammadelta T cells resulted in impaired IFN-gamma production by tumor antigen-triggered alphabeta T cell upon immunization with tumor lysate. These results demonstrate that gammadelta T cells can play a necessary role in tumor immunity through provision of an early source of IFN-gamma that in turn may regulate the function of tumor-triggered alphabeta T cells.


Intracellular antimicrobial activity in the absence of interferon-gamma: effect of interleukin-12 in experimental visceral leishmaniasis in interferon-gamma gene-disrupted mice.

  • A P Taylor‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Despite permitting uncontrolled intracellular visceral infection for 8 wk, interferon-gamma (IFN-gamma) gene knockout (GKO) mice infected with Leishmania donovani proceeded to reduce liver parasite burdens by 50% by week 12. This late-developing IFN-gamma-independent antileishmanial mechanism appeared to be dependent largely on endogenous tumor necrosis factor-alpha (TNF-alpha): L. donovani infection induced TNF-alpha mRNA expression in parasitized GKO livers and neutralization of TNF-alpha reversed control at week 12.7 d of treatment of infected GKO mice with interleukin-12 (IL-12) readily induced leishmanicidal activity and also partially restored the near-absent tissue granulomatous response, observations that for the first time expand the antimicrobial repertoire of IL-12 to include IFN-gamma-independent effects. The action of IL-12 against L. donovani was TNF-alpha dependent and required the activity of inducible nitric oxide synthase. These results point to the presence of an IFN-gamma-independent antimicrobial mechanism, mediated by TNF-alpha, which remains quiescent until activated late in the course of experimental visceral leishmaniasis. However, as judged by the effect of exogenous IL-12 this quiescent mechanism can readily be induced to rapidly yield enhanced intracellular antimicrobial activity.


Involvement of TWEAK in interferon gamma-stimulated monocyte cytotoxicity.

  • M Nakayama‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

TWEAK, a new member of the tumor necrosis factor (TNF) family, induces cell death in some tumor cell lines, but its physiological functions are largely unknown. In this study, we investigated the expression and function of TWEAK in human peripheral blood mononuclear cells (PBMCs) by using newly generated anti-human TWEAK mAbs. Although freshly isolated PBMCs expressed no detectable level of TWEAK on their surfaces, a remarkable TWEAK expression was rapidly observed on monocytes upon stimulation with interferon (IFN)-gamma but not with IFN-alpha or lipopolysaccharide. Cytotoxic activity of IFN-gamma-stimulated monocytes against human squamous carcinoma cell line HSC3 was inhibited partially by anti-TWEAK mAb alone and almost completely by combination with anti-TRAIL (TNF-related apoptosis-inducing ligand) mAb. These results revealed a novel pathway of monocyte cytotoxicity against tumor cells that is mediated by TWEAK and potentiated by IFN-gamma.


Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression.

  • J C Blanco‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Cyclooxygenases (Cox) are rate-limiting enzymes that initiate the conversion of arachidonic acid to prostanoids. Cox-2 is the inducible isoform that is upregulated by proinflammatory agents, initiating many prostanoid-mediated pathological aspects of inflammation. In this study, we demonstrate that interferon (IFN)-gamma alone or in synergy with lipopolysaccharide (LPS) or interleukin 1alpha induces Cox-2 expression in mouse peritoneal macrophages, which is paralleled by changes in Cox-2 protein levels and prostaglandin E(2) (PGE(2)) release. Induction of Cox-2 was abrogated in macrophages that lack IFN regulatory factor (IRF)-1, consistent with an attenuated hepatic mRNA response in IRF-1(-/-) mice injected with LPS. Conversely, the absence of IRF-2 in macrophages resulted in a significant increase in both basal and inducible Cox-2 gene and protein expression as well as IFN-gamma-stimulated PGE(2) release, identifying IRF-2 as negative regulator of this promoter. Two IFN stimulation response elements were identified in the mouse Cox-2 promoter that were highly conserved in the human Cox-2 gene. Both bind endogenous IRF-1 and IRF-2 and regulate transcription in an IRF-1/2-dependent manner. Our data demonstrate conclusively the importance of IFN-gamma as a direct activator and coactivator of the Cox-2 gene, and the central role of IRF-1/2 family members in this process.


Suppression of lymphoma and epithelial malignancies effected by interferon gamma.

  • Shayna E A Street‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perforin (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma-deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.


Interferon gamma stabilizes the T helper cell type 1 phenotype.

  • Y Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

T helper cell (Th)1-primed CD4 T cells from wild-type donors make little interleukin (IL)-4 when restimulated under Th2 conditions. However, such restimulation of Th1-primed cells from interferon (IFN)-gamma(2/-) or IFN-gamma receptor (IFN-gammaR)(-/-) mice resulted in substantial production of IL-4 and other Th2 cytokines. Adding IFN-gamma to the priming culture markedly diminished the capacity of Th1-primed IFN-gamma(2/-) cells to express IL-4. Even IFN-gamma-producing cells from IFN-gammaR(-/-) mice could acquire IL-4-producing capacity. Thus, IFN-gamma is not required for the development of IFN-gamma-producing capacity, but it plays a critical role in suppressing the IL-4-producing potential of Th1 cells.


Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation.

  • N Udagawa‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

We have established by differential display polymerase chain reaction of mRNA that interleukin (IL)-18 is expressed by osteoblastic stromal cells. The stromal cell populations used for comparison differed in their ability to promote osteoclast-like multinucleated cell (OCL) formation. mRNA for IL-18 was found to be expressed in greater abundance in lines that were unable to support OCL formation than in supportive cells. Recombinant IL-18 was found to inhibit OCL formation in cocultures of osteoblasts and hemopoietic cells of spleen or bone marrow origin. IL-18 inhibited OCL formation in the presence of osteoclastogenic agents including 1alpha,25-dihydroxyvitamin D3, prostaglandin E2, parathyroid hormone, IL-1, and IL-11. The inhibitory effect of IL-18 was limited to the early phase of the cocultures, which coincides with proliferation of hemopoietic precursors. IL-18 has been reported to induce interferon-gamma (IFN-gamma) and granulocyte/macrophage colony-stimulating factor (GM-CSF) production in T cells, and both agents also inhibit OCL formation in vitro. Neutralizing antibodies to GM-CSF were able to rescue IL-18 inhibition of OCL formation, whereas neutralizing antibodies to IFN-gamma did not. In cocultures with osteoblasts and spleen cells from IFN-gamma receptor type II-deficient mice, IL-18 was found to inhibit OCL formation, indicating that IL-18 acted independently of IFN-gamma production: IFN-gamma had no effect in these cocultures. Additionally, in cocultures in which spleen cells were derived from receptor-deficient mice and osteoblasts were from wild-type mice and vice versa, we identified that the target cells for IFN-gamma inhibition of OCL formation were the hemopoietic cells. The work provides evidence that IL-18 is expressed by osteoblasts and inhibits OCL formation via GM-CSF production and not via IFN-gamma production.


Deficiencies of GM-CSF and interferon gamma link inflammation and cancer.

  • Thomas Enzler‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Chronic inflammation contributes to carcinogenesis, but the underlying mechanisms are poorly understood. We report that aged granulocyte-macrophage colony stimulating factor (GM-CSF)-deficient mice develop a systemic lupus erythematosis (SLE)-like disorder associated with the impaired phagocytosis of apoptotic cells. Concurrent deficiency of interferon (IFN)-gamma attenuates the SLE, but promotes the formation of diverse hematologic and solid neoplasms within a background of persistent infection and inflammation. Whereas activated B cells show a resistance to fas-induced apoptosis, antimicrobial therapy prevents lymphomagenesis and solid tumor development. These findings demonstrate that the interplay of infectious agents with cytokine-mediated regulation of immune homeostasis is a critical determinant of cancer susceptibility.


Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells.

  • T Ohteki‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

We investigated the role of antigen-presenting cells in early interferon (IFN)-gamma production in normal and recombinase activating gene 2-deficient (Rag-2(-/-)) mice in response to Listeria monocytogenes (LM) infection and interleukin (IL)-12 administration. Levels of serum IFN-gamma in Rag-2(-/-) mice were comparable to those of normal mice upon either LM infection or IL-12 injection. Depletion of natural killer (NK) cells by administration of anti-asialoGM1 antibodies had little effect on IFN-gamma levels in the sera of Rag-2(-/-) mice after LM infection or IL-12 injection. Incubation of splenocytes from NK cell-depleted Rag-2(-/-) mice with LM resulted in the production of IFN-gamma that was completely blocked by addition of anti-IL-12 antibodies. Both dendritic cells (DCs) and monocytes purified from splenocytes were capable of producing IFN-gamma when cultured in the presence of IL-12. Intracellular immunofluorescence analysis confirmed the IFN-gamma production from DCs. It was further shown that IFN-gamma was produced predominantly by CD8alpha+ lymphoid DCs rather than CD8alpha- myeloid DCs. Collectively, our data indicated that DCs are potent in producing IFN-gamma in response to IL-12 produced by bacterial infection and play an important role in innate immunity and subsequent T helper cell type 1 development in vivo.


Interferon gamma is required for activation-induced death of T lymphocytes.

  • Yosef Refaeli‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

The effector cytokine interferon gamma (IFN-gamma) may play a role in T cell homeostasis. We have examined the requirement for IFN-gamma in one mechanism that regulates T cell expansion and survival, activation-induced cell death (AICD). CD4(+) T cells lacking IFN-gamma or the Stat1 transcription factor are resistant to AICD. IFN-gamma is required for the production of caspases, and retrovirus-mediated expression of caspase-8 restores the sensitivity of Stat1-deficient T cells to AICD. In vitro, IFN-gamma limits the expansion of T cells that are stimulated through their antigen receptors. Thus, IFN-gamma may function to control the expansion and persistence of T cells by promoting caspase-8-dependent apoptosis.


Interferon gamma induction of pulmonary emphysema in the adult murine lung.

  • Z Wang‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Chronic inflammation containing CD8(+) lymphocytes, neutrophils, and macrophages, and pulmonary emphysema coexist in lungs from patients with chronic obstructive pulmonary disease. Although this inflammatory response is believed to cause the remodeling that is seen in these tissues, the mechanism(s) by which inflammation causes emphysema have not been defined. Here we demonstrate that interferon gamma (IFN-gamma), a prominent product of CD8(+) cells, causes emphysema with alveolar enlargement, enhanced lung volumes, enhanced pulmonary compliance, and macrophage- and neutrophil-rich inflammation when inducibly targeted, in a transgenic fashion, to the adult murine lung. Prominent protease and antiprotease alterations were also noted in these mice. They included the induction and activation of matrix metalloproteinase (MMP)-12 and cathepsins B, H, D, S, and L, the elaboration of MMP-9, and the selective inhibition of secretory leukocyte proteinase inhibitor. IFN-gamma causes emphysema and alterations in pulmonary protease/antiprotease balance when expressed in pulmonary tissues.


Impairment of natural killer cytotoxic activity and interferon gamma production in CCAAT/enhancer binding protein gamma-deficient mice.

  • T Kaisho‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

We have investigated in vivo roles of CCAAT/enhancer binding protein gamma (C/EBPgamma) by gene targeting. C/EBPgamma-deficient (C/EBPgamma(2/-)) mice showed a high mortality rate within 48 h after birth. To analyze the roles of C/EBPgamma in lymphoid lineage cells, bone marrow chimeras were established. C/EBPgamma(2/-) chimeras showed normal T and B cell development. However, cytolytic functions of their splenic natural killer (NK) cells after stimulation with cytokines such as interleukin (IL)-12, IL-18, and IL-2 were significantly reduced as compared with those of control chimera NK cells. In addition, the ability of C/EBPgamma(-/-) chimera splenocytes to produce interferon (IFN)-gamma in response to IL-12 and/or IL-18 was markedly impaired. NK cells could be generated in vitro with normal surface marker expression in the presence of IL-15 from C/EBPgamma(2/-) newborn spleen cells. However, they also showed lower cytotoxic activity and IFN-gamma production when stimulated with IL-12 plus IL-18 than control NK cells, as observed in C/EBPgamma(2/-) chimera splenocytes. In conclusion, our study reveals that C/EBPgamma is a critical transcription factor involved in the functional maturation of NK cells.


Interferon gamma gene expression in sensory neurons: evidence for autocrine gene regulation.

  • H Neumann‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

We explored expression and possible function of interferon-gamma (IFN-gamma) in cultured fetal (E15) rat dorsal root ganglion neurons combining whole cell patch-clamp electrophysiology with single cell reverse transcriptase polymerase chain reaction and confocal laser immunocytochemistry. Morphologically, we located IFN-gamma protein in the cytoplasm of the neurons in culture as well as in situ during peri- and postnatal development. Transcripts for classic IFN-gamma and for its receptor were determined in probes of cytoplasm sampled from individual cultured neurons, which had been identified by patch clamp electrophysiology. In addition, the cultured neurons expressed both chains of the IFN-gamma receptor. Locally produced IFN-gamma acts back on its cellular source. Phosphorylation and nuclear translocation of the IFN-inducible transcriptional factor STAT1 as well as IFN-gamma-dependent expression of major histocompatibility complex class I molecules on the neuronal membrane were noted in untreated cultures. However, both processes were substantially blocked in the presence of antibodies neutralizing IFN-gamma. Our findings indicate a role of IFN-gamma in autocrine regulation of sensory neurons.


Autocrine secretion of interferon gamma negatively regulates homing of immature B cells.

  • L Flaishon‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

The mechanism by which immature B cells are sequestered from encountering foreign antigens present in lymph nodes or sites of inflammation, before their final maturation in the spleen, has not been elucidated. We show here that immature B cells fail to home to the lymph nodes. These cells can actively exclude themselves from antigen-enriched sites by downregulating their integrin-mediated adhesion to the extracellular matrix protein, fibronectin. This inhibition is mediated by interferon gamma secretion. Perturbation of interferon gamma activity in vivo leads to the homing of immature B cells to the lymph nodes. This is the first example of autocrine regulation of immune cell migration to sites of foreign antigen presentation.


Interferon gamma signaling alters the function of T helper type 1 cells.

  • G Z Tau‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon gamma receptor (IFN-gammaR), whereas Th1 cells do not express the second chain of the IFN-gammaR (IFN-gammaR2) and are therefore unresponsive to IFN-gamma. To determine whether the regulation of IFN-gammaR2 expression, and therefore IFN-gamma responsiveness, is important for the differentiation of naive CD4(+) T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-gammaR2 is controlled by the CD2 promoter and enhancer. CD4(+) T cells from IFN-gammaR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-gamma production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-gammaR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-gamma-unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


Novel cell type-specific antiviral mechanism of interferon gamma action in macrophages.

  • R M Presti‎ et al.
  • The Journal of experimental medicine‎
  • 2001‎

Interferon (IFN)-gamma and macrophages (Mphi) play key roles in acute, persistent, and latent murine cytomegalovirus (MCMV) infection. IFN-gamma mechanisms were compared in embryonic fibroblasts (MEFs) and bone marrow Mphi (BMMphi). IFN-gamma inhibited MCMV replication in a signal transducer and activator of transcription (STAT)-1alpha-dependent manner much more effectively in BMMphi (approximately 100-fold) than MEF (5-10-fold). Although initial STAT-1alpha activation by IFN-gamma was equivalent in MEF and BMMphi, microarray analysis demonstrated that IFN-gamma regulates different sets of genes in BMMphi compared with MEFs. IFN-gamma inhibition of MCMV growth was independent of known mechanisms involving IFN-alpha/beta, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase RNA activated (PKR), RNaseL, and Mx1, and did not involve IFN-gamma-induced soluble mediators. To characterize this novel mechanism, we identified the viral targets of IFN-gamma action, which differed in MEF and BMMphi. In BMMphi, IFN-gamma reduced immediate early 1 (IE1) mRNA during the first 3 h of infection, and significantly reduced IE1 protein expression for 96 h. Effects of IFN-gamma on IE1 protein expression were independent of RNaseL and PKR. In contrast, IFN-gamma had no significant effects on IE1 protein or mRNA expression in MEFs, but did decrease late gene mRNA expression. These studies in primary cells define a novel mechanism of IFN-gamma action restricted to Mphi, a cell type key for MCMV pathogenesis and latency.


Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.

  • B Balasa‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

Experimental autoimmune myasthenia gravis (EAMG) is an animal model of human myasthenia gravis (MG). In mice, EAMG is induced by immunization with Torpedo californica acetylcholine receptor (AChR) in complete Freund's adjuvant (CFA). However, the role of cytokines in the pathogenesis of EAMG is not clear. Because EAMG is an antibody-mediated disease, it is of the prevailing notion that Th2 but not Th1 cytokines play a role in the pathogenesis of this disease. To test the hypothesis that the Th1 cytokine, interferon (IFN)-gamma, plays a role in the development of EAMG, we immunized IFN-gamma knockout (IFN-gko) (-/-) mice and wild-type (WT) (+/+) mice of H-2(b) haplotype with AChR in CFA. We observed that AChR-primed lymph node cells from IFN-gko mice proliferated normally to AChR and to its dominant pathogenic alpha146-162 sequence when compared with these cells from the WT mice. However, the IFN-gko mice had no signs of muscle weakness and remained resistant to clinical EAMG at a time when the WT mice exhibited severe muscle weakness and some died. The resistance of IFN-gko mice was associated with greatly reduced levels of circulating anti-AChR antibody levels compared with those in the WT mice. Comparatively, immune sera from IFN-gko mice showed a dramatic reduction in mouse AChR-specific IgG1 and IgG2a antibodies. However, keyhole limpet hemocyanin (KLH)-priming of IFN-gko mice readily elicited both T cell and antibody responses, suggesting that IFN-gamma regulates the humoral immune response distinctly to self (AChR) versus foreign (KLH) antigens. We conclude that IFN-gamma is required for the generation of a pathogenic anti-AChR humoral immune response and for conferring susceptibility of mice to clinical EAMG.


Differential regulation of cathepsin S and cathepsin L in interferon gamma-treated macrophages.

  • Courtney Beers‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Cathepsin S (catS) and cathepsin L (catL) mediate late stages of invariant chain (Ii) degradation in discrete antigen-presenting cell types. Macrophages (Mphis) are unique in that they express both proteases and here we sought to determine the relative contribution of each enzyme. We observe that catL plays no significant role in Ii cleavage in interferon (IFN)-gamma-stimulated Mphis. In addition, our studies show that the level of catL activity is significantly decreased in Mphis cultured in the presence of IFN-gamma whereas catS activity increases. The decrease in catL activity upon cytokine treatment occurs despite the persistence of high levels of mature catL protein, suggesting that a specific inhibitor of the enzyme is up-regulated in IFN-gamma-stimulated peritoneal Mphis. Similar inhibition of activity is observed in dendritic cells engineered to overexpress catL. Such enzymatic inhibition in Mphis exhibits only partial dependence upon Ii and therefore, other mechanisms of catL inhibition are regulated by IFN-gamma. Thus, during a T helper cell type 1 immune response catL inhibition in Mphis results in preferential usage of catS, such that major histocompatibility complex class II presentation by all bone marrow-derived antigen-presenting cell is regulated by catS.


T helper 1 cells and interferon gamma regulate allergic airway inflammation and mucus production.

  • L Cohn‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

CD4 T helper (Th) type 1 and Th2 cells have been identified in the airways of asthmatic patients. Th2 cells are believed to contribute to pathogenesis of the disease, but the role of Th1 cells is not well defined. In a mouse model, we previously reported that transferred T cell receptor-transgenic Th2 cells activated in the respiratory tract led to airway inflammation with many of the pathologic features of asthma, including airway eosinophilia and mucus production. Th1 cells caused inflammation with none of the pathology associated with asthma. In this report, we investigate the role of Th1 cells in regulating airway inflammation. When Th1 and Th2 cells are transferred together into recipient mice, there is a marked reduction in airway eosinophilia and mucus staining. To address the precise role of Th1 cells, we asked (i), Are Th2-induced responses inhibited by interferon (IFN)-gamma? and (ii) Can Th1 cells induce eosinophilia and mucus in the absence of IFN-gamma? In IFN-gamma receptor(-/-) recipient mice exposed to inhaled antigen, the inhibitory effects of Th1 cells on both airway eosinophilia and mucus production were abolished. In the absence of IFN-gamma receptor signaling, Th1 cells induced mucus but not eosinophilia. Thus, we have identified new regulatory pathways for mucus production; mucus can be induced by Th2 and non-Th2 inflammatory responses in the lung, both of which are inhibited by IFN-gamma. The blockade of eosinophilia and mucus production by IFN-gamma likely occurs through different inhibitory pathways that are activated downstream of Th2 cytokine secretion and require IFN-gamma signaling in tissue of recipient mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: