Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

  • Yasuhiro Mimura‎ et al.
  • Scientific reports‎
  • 2017‎

Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.


Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology.

  • Claire Shuk-Kwan Lee‎ et al.
  • Scientific reports‎
  • 2016‎

Lysosomal calcium (Ca(2+)) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca(2+) signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2's true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca(2+) transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K(+) as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation.


Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei.

  • Jessica Kehrer‎ et al.
  • Scientific reports‎
  • 2018‎

The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.


Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier.

  • Ivan Liashkovich‎ et al.
  • Scientific reports‎
  • 2015‎

Existence of a selective nucleocytoplasmic permeability barrier is attributed to Phenylalanine-Glycine rich proteins (FG-nups) within the central channel of the nuclear pore complex (NPC). Limited understanding of the FG-nup structural arrangement hinders development of strategies directed at disrupting the NPC permeability barrier. In this report we explore an alternative approach to enhancing the NPC permeability for exogenous macromolecules. We demonstrate that the recently discovered inhibitor of clathrin coat assembly Pitstop-2 compromises the NPC permeability barrier in a rapid and effective manner. Treatment with Pitstop-2 causes a collapse of the NPC permeability barrier and a reduction of Importin β binding accompanied by alteration of the NPC ultrastructure. Interestingly, the effects are induced by the same chemical agent that is capable of inhibiting clathrin-mediated endocytosis. To our knowledge, this is the first functional indication of the previously postulated evolutionary relation between clathrin and NPC scaffold proteins.


Indel driven rapid evolution of core nuclear pore protein gene promoters.

  • David W J McQuarrie‎ et al.
  • Scientific reports‎
  • 2023‎

Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.


Genomic identification and expression analysis of nuclear pore proteins in Malus domestica.

  • Chenguang Zhang‎ et al.
  • Scientific reports‎
  • 2020‎

The nuclear pore complex (NPC), comprised of individual nucleoporin (Nup) proteins, controls nucleo-cytoplasmic transport of RNA and protein, and is important for regulating plant growth and development. However, there are no reports on this complex in fruit tree species. In this study, we identified 38 apple Nups and named them based on the known Arabidopsis thaliana homologs. We also completed bioinformatics analyses of the intron and exon structural data for apple Nups. The proteins encoded by the apple Nups lacked a universally conserved domain. Moreover, a phylogenetic analysis separated the apple and A. thaliana Nups into three groups. The phylogenetic tree indicated that MdNup54 and MdNup62 are most closely related to genes in other Rosaceae species. To characterize the 38 candidate Malus domestica Nups, we measured their stage-specific expression levels. Our tests revealed these proteins were differentially expressed among diverse tissues. We analyzed the expression levels of seven apple Nups in response to an indole-3-acetic acid (IAA) treatment. The phytohormone treatment significantly inhibited apple flowering. A qRT-PCR analysis proved that an IAA treatment significantly inhibited the expression of these seven genes. A preliminary study regarding two members of the Nup62 subcomplex, MdNup54 and MdNup62, confirmed these two proteins can interact with each other. A yeast two-hybrid assay verified that MdNup54 can interact with MdKNAT4 and MdKNAT6. On the basis of the study results, we identified apple NPC and predicted its structure and function. The data generated in this investigation provide important reference material for follow-up research.


Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy.

  • Julien Sellés‎ et al.
  • Scientific reports‎
  • 2017‎

Nuclear Pore Complex (NPC) is of paramount importance for cellular processes since it is the unique gateway for molecular exchange through the nucleus. Unraveling the modifications of the NPC structure in response to physiological cues, also called nuclear pore plasticity, is key to the understanding of the selectivity of this molecular machinery. As a step towards this goal, we use the optical super-resolution microscopy method called direct Stochastic Optical Reconstruction Microscopy (dSTORM), to analyze oocyte development impact on the internal structure and large-scale organization of the NPC. Staining of the FG-Nups proteins and the gp210 proteins allowed us to pinpoint a decrease of the global diameter by measuring the mean diameter of the central channel and the luminal ring of the NPC via autocorrelation image processing. Moreover, by using an angular and radial density function we show that development of the Xenopus laevis oocyte is correlated with a progressive decrease of the density of NPC and an ordering on a square lattice.


In vivo analysis of protein crowding within the nuclear pore complex in interphase and mitosis.

  • Hide A Konishi‎ et al.
  • Scientific reports‎
  • 2017‎

The central channel of the nuclear pore complex (NPC) is occupied by non-structured polypeptides with a high content of Phe-Gly (FG) motifs. This protein-rich environment functions as an entropic barrier that prevents the passage of molecules, as well as the binding sites for karyopherins, to regulate macromolecular traffic between the nucleoplasm and the cytoplasm. In this study, we expressed individual Nups fused with a crowding-sensitive probe (GimRET) to determine the spatial distribution of protein-rich domains within the central channel in vivo, and characterize the properties of the entropic barrier. Analyses of the probe signal revealed that the central channel contains two protein-rich domains at both the nucleoplasmic and cytoplasmic peripheries, and a less-crowded central cavity. Karyopherins and other soluble proteins are not the constituents of the protein-rich domains. The time-lapse observation of the post-mitotic reassembly process also revealed how individual protein-rich domains are constructed by a sequential assembly of nucleoporins.


Particle fusion of super-resolution data reveals the unit structure of Nup96 in Nuclear Pore Complex.

  • Wenxiu Wang‎ et al.
  • Scientific reports‎
  • 2023‎

Single molecule localization microscopy offers resolution nearly down to the molecular level with specific molecular labelling, and is thereby a promising tool for structural biology. In practice, however, the actual value to this field is limited primarily by incomplete fluorescent labelling of the structure. This missing information can be completed by merging information from many structurally identical particles in a particle fusion approach similar to cryo-EM single-particle analysis. In this paper, we present a data analysis of particle fusion results of fluorescently labelled Nup96 nucleoporins in the Nuclear Pore Complex to show that Nup96 occurs in a spatial arrangement of two rings of 8 units with two Nup96 copies per unit giving a total of 32 Nup96 copies per pore. We use Artificial Intelligence assisted modeling in Alphafold to extend the existing cryo-EM model of Nup96 to accurately pinpoint the positions of the fluorescent labels and show the accuracy of the match between fluorescent and cryo-EM data to be better than 3 nm in-plane and 5 nm out-of-plane.


Nuclear expansion and pore opening are instant signs of neuronal hypoxia and can identify poorly fixed brains.

  • Anisa Dehghani‎ et al.
  • Scientific reports‎
  • 2018‎

The initial phase of neuronal death is not well characterized. Here, we show that expansion of the nuclear membrane without losing its integrity along with peripheralization of chromatin are immediate signs of neuronal injury. Importantly, these changes can be identified with commonly used nuclear stains and used as markers of poor perfusion-fixation. Although frozen sections are widely used, no markers are available to ensure that the observed changes were not confounded by perfusion-induced hypoxia/ischemia. Moreover, HMGB1 was immediately released and p53 translocated to mitochondria in hypoxic/ischemic neurons, whereas nuclear pore complex inhibitors prevented the nuclear changes, identifying novel neuroprotection targets.


Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex.

  • M Peyro‎ et al.
  • Scientific reports‎
  • 2015‎

The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named 'like charge regions' (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC.


Persistent inhibition of pore-based cell migration by sub-toxic doses of miuraenamide, an actin filament stabilizer.

  • Christina Moser‎ et al.
  • Scientific reports‎
  • 2017‎

Opposed to tubulin-binding agents, actin-binding small molecules have not yet become part of clinical tumor treatment, most likely due to the fear of general cytotoxicity. Addressing this problem, we investigated the long-term efficacy of sub-toxic doses of miuraenamide, an actin filament stabilizing natural compound, on tumor cell (SKOV3) migration. No cytotoxic effects or persistent morphological changes occurred at a concentration of miuraenamide of 20 nM. After 72 h treatment with this concentration, nuclear stiffness was increased, causing reduced migration through pores in a Boyden chamber, while cell migration and chemotaxis per se were unaltered. A concomitant time-resolved proteomic approach showed down regulation of a protein cluster after 56 h treatment. This cluster correlated best with the Wnt signaling pathway. A further analysis of the actin associated MRTF/SRF signaling showed a surprising reduction of SRF-regulated proteins. In contrast to acute effects of actin-binding compounds on actin at high concentrations, long-term low-dose treatment elicits much more subtle but still functionally relevant changes beyond simple destruction of the cytoskeleton. These range from biophysical parameters to regulation of protein expression, and may help to better understand the complex biology of actin, as well as to initiate alternative regimes for the testing of actin-targeting drugs.


Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry.

  • Doortje Borrenberghs‎ et al.
  • Scientific reports‎
  • 2016‎

Nuclear entry is a selective, dynamic process granting the HIV-1 pre-integration complex (PIC) access to the chromatin. Classical analysis of nuclear entry of heterogeneous viral particles only yields averaged information. We now have employed single-virus fluorescence methods to follow the fate of single viral pre-integration complexes (PICs) during infection by visualizing HIV-1 integrase (IN). Nuclear entry is associated with a reduction in the number of IN molecules in the complexes while the interaction with LEDGF/p75 enhances IN oligomerization in the nucleus. Addition of LEDGINs, small molecule inhibitors of the IN-LEDGF/p75 interaction, during virus production, prematurely stabilizes a higher-order IN multimeric state, resulting in stable IN multimers resistant to a reduction in IN content and defective for nuclear entry. This suggests that a stringent size restriction determines nuclear pore entry. Taken together, this work demonstrates the power of single-virus imaging providing crucial insights in HIV replication and enabling mechanism-of-action studies.


Bacterial Pore-Forming Toxins Promote the Activation of Caspases in Parallel to Necroptosis to Enhance Alarmin Release and Inflammation During Pneumonia.

  • Norberto Gonzalez-Juarbe‎ et al.
  • Scientific reports‎
  • 2018‎

Pore-forming toxins are the most common virulence factor in pathogenic bacteria. They lead to membrane permeabilization and cell death. Herein, we show that respiratory epithelial cells (REC) undergoing bacterial pore-forming toxin (PFT)-induced necroptosis simultaneously experienced caspase activation independently of RIPK3. MLKL deficient REC treated with a pan-caspase inhibitor were protected in an additive manner against PFT-induced death. Subsequently, cleaved versions of caspases-2, -4 and -10 were detected within REC undergoing necroptosis by immunoblots and monoclonal antibody staining. Caspase activation was observed in lung samples from mice and non-human primates experiencing Gram-negative and Gram-positive bacterial pneumonia, respectively. During apoptosis, caspase activation normally leads to cell shrinkage, nuclear condensation, and immunoquiescent death. In contrast, caspase activity during PFT-induced necroptosis increased the release of alarmins to the extracellular milieu. Caspase-mediated alarmin release was found sufficient to activate resting macrophages, leading to Interleukin-6 production. In a mouse model of Gram-negative pneumonia, deletion of caspases -2 and -11, the mouse orthologue of caspase-4, reduced pulmonary inflammation, immune cell infiltration and lung damage. Thus, our study describes a previously unrecognized role for caspase activation in parallel to necroptosis, and indicates that their activity plays a critical pro-inflammatory role during bacterial pneumonia.


Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD.

  • Steven Boeynaems‎ et al.
  • Scientific reports‎
  • 2016‎

Hexanucleotide repeat expansions in C9orf72 are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) (c9ALS/FTD). Unconventional translation of these repeats produces dipeptide repeat proteins (DPRs) that may cause neurodegeneration. We performed a modifier screen in Drosophila and discovered a critical role for importins and exportins, Ran-GTP cycle regulators, nuclear pore components, and arginine methylases in mediating DPR toxicity. These findings provide evidence for an important role for nucleocytoplasmic transport in the pathogenic mechanism of c9ALS/FTD.


Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg.

  • Yuka Suzuki‎ et al.
  • Scientific reports‎
  • 2019‎

Reformation of a functional nucleus at the end of mitosis is crucial for normal cellular activity. Reconstitution approaches using artificial beads in frog egg extracts have clarified the molecules required for nuclear formation in vitro. However, the spatiotemporal regulation of these components, which is required for the formation of a functional nucleus in living embryos, remains unknown. Here we demonstrate that exogenous DNA introduced in the form of DNA-conjugated beads induces the assembly of an artificial nucleus in living mouse cleavage-stage embryos. Live-cell imaging and immunofluorescence studies revealed that core histones and regulator of chromosome condensation 1 (RCC1) assembled on the DNA, suggesting that nucleosomes were formed. Electron microscopy showed that double-membrane structures, partly extended from annulate lamellae, formed around the beads. Nuclear pore complex-like structures indistinguishable from those of native nuclei were also formed, suggesting that this membranous structure resembled the normal nuclear envelope (NE). However, the reconstituted NE had no nuclear import activity, probably because of the absence of Ras-related nuclear protein (Ran). Thus, DNA is necessary for NE reassembly in mouse embryos but is insufficient to form a functional nucleus. This approach provides a new tool to examine factors of interest and their spatiotemporal regulation in nuclear formation.


Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition.

  • Asfar S Azmi‎ et al.
  • Scientific reports‎
  • 2015‎

Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (-ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore.


Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

  • Hyuk-Kwon Kwon‎ et al.
  • Scientific reports‎
  • 2015‎

The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies.


The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy.

  • Ji Eun Kim‎ et al.
  • Scientific reports‎
  • 2019‎

Radiocontrast-induced nephropathy (CIN) is the third most common cause of acute renal failure. The pathophysiology of CIN is related to tubular injury caused by oxidative stress, and nuclear factor erythroid-2-related factor 2 (Nrf2) is critical in coordinating intracellular antioxidative processes. We thus investigated the role of Nrf2 in CIN. CIN was established in mice and in NRK-52E cells via iohexol administration according to the protocols of previous studies. To determine the role of Nrf2 in CIN, Nrf2 expression was reduced in vivo using Nrf2 knockout (KO) mice (B6.129 × 1-Nfe2 l2tm1Ywk/J) and in vitro with siRNA treatment targeting Nrf2. Increased Nrf2 expression was observed after iohexol treatment both in vivo and in vitro. Serum creatinine at 24 h after iohexol injection was significantly higher in KO mice than in wild-type (WT) mice. Histologic examination showed that iohexol-induced tubular vacuolization and structural disruption were aggravated in Nrf2 KO mice. Significant increases in apoptosis and F4/80(+) inflammatory cell infiltration were demonstrated in KO mice compared to WT mice. In addition, the increase in reactive oxygen species after iohexol treatment was augmented by Nrf2 inhibition both in vivo and in vitro. Nrf2 may be implicated in the pathogenesis of CIN via the modulation of antioxidant, anti-apoptotic, and anti-inflammatory processes.


A lignan induces lysosomal dependent degradation of FoxM1 protein to suppress β-catenin nuclear translocation.

  • Guang-Zhi Dong‎ et al.
  • Scientific reports‎
  • 2017‎

Colon cancer is one of the most common cancers. In this study, we isolated a lignan [(-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol, DFS] from Alnus japonica (Betulaceae) and investigated its biological activity and mechanism of action on colon cancer. DFS reduced the viability of colon cancer cells and induced cell cycle arrest. DFS also suppressed β-catenin nuclear translocation and β-catenin target gene expression through a reduction in FoxM1 protein. To assess the mechanism of the action of DFS, we investigated the effect of DFS on endogenous and exogenous FoxM1 protein degradation in colon cancer cells. DFS-induced FoxM1 protein degradation was suppressed by lysosomal inhibitors, chloroquine and bafilomycin A1, but not by knock-down of proteasomal proteins. The mechanism of DFS for FoxM1 degradation is lysosomal dependent, which was not reported before. Furthermore, we found that FoxM1 degradation was partially lysosomal-dependent under normal conditions. These observations indicate that DFS from A. japonica suppresses colon cancer cell proliferation by reducing β-catenin nuclear translocation. DFS induces lysosomal-dependent FoxM1 protein degradation. This is the first report on the lysosomal degradation of FoxM1 by a small molecule. DFS may be useful in treating cancers that feature the elevated expression of FoxM1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: