Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Biomarkers for the toxicity of sublethal concentrations of triclosan to the early life stages of carps.

  • Owias Iqbal Dar‎ et al.
  • Scientific reports‎
  • 2020‎

Accumulation, contents of protein, non-enzymatic antioxidant glutathione (GSH and GSSG), lipid peroxidation product (melondialdehyde-MDA) and organic acids (fumarate, succinate, malate and citrate), and activities of neurological (acetylcholinesterase-AChE), detoxification (glutathione S-transferase-GST) and metabolic (lactate dehydrogenase-LDH, aspartate transaminase-AST and alanine transaminase-ALT) enzymes were recorded in the hatchlings of Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala after 7 and 14 days exposure and 10 days post exposure (recovery period) to sublethal concentrations (0.005, 0.01, 0.02 and 0.05 mg/L) of triclosan, a highly toxic and persistent biocide used in personal care products. Accumulation was maximum between 7-14 days at 0.01 mg/L for C. carpio and L. rohita but at 0.005 mg/L for C. idella and C. mrigala. No triclosan was observed at 0.005 mg/L in C. carpio and C. mrigala after recovery. Significant decline in protein, glutathione and acetylcholinesterase but increase in glutathione S-transferase, lactate dehydrogenase, aspartate transaminase, alanine transaminase, melondialdehyde and organic acids over control during exposure continued till the end of recovery period. Integrated biomarker response (IBR) analysis depicted higher star plot area for glutathione and glutathione S-transferase during initial 7 days of exposure, thereafter, during 7-14 days of exposure and the recovery period, higher star plot area was observed for acetylcholinesterase, aspartate transaminase, alanine transaminase and organic acids. Higher star plot area was observed for protein in all the species throughout the study. The study shows that L. rohita is most sensitive and glutathione, acetylcholinesterase, aspartate transaminase and alanine transaminase are the biomarkers for the toxicity of sublethal concentrations of TCS.


Molecular insights into the mechanisms of susceptibility of Labeo rohita against oomycete Aphanomyces invadans.

  • P K Pradhan‎ et al.
  • Scientific reports‎
  • 2020‎

Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome, is one of the most destructive pathogens of freshwater fishes. To date, the disease has been reported from over 160 fish species in 20 countries and notably, this is the first non-salmonid disease that has resulted in major impacts globally. In particular, Indian major carps (IMCs) are highly susceptible to this disease. To increase our knowledge particularly with regards to host immune response against A. invadans infection in a susceptible host, the gene expression profile in head kidney of A. invadans-infected and control rohu, Labeo rohita was investigated using RNA sequencing. Time course analysis of RNA-Seq data revealed 5608 differentially expressed genes, involved among others in Antigen processing and presentation, Leukocyte transendothelial migration, IL-17 signaling, Chemokine signaling, C-type lectin receptor signaling and Toll-like receptor signaling pathways. In the affected pathways, a number of immune genes were found to be downregulated, suggesting an immune evasion strategy of A. invadans in establishing the infection. The information generated in this study offers first systematic mechanistic understanding of the host-pathogen interaction that might underpin the development of new management strategies for this economically devastating fish-pathogenic oomycete A. invadans.


Effects of toxic Microcystis aeruginosa on the silver carp Hypophthalmichtys molitrix revealed by hepatic RNA-seq and miRNA-seq.

  • Menghong Hu‎ et al.
  • Scientific reports‎
  • 2017‎

High-throughput sequencing was applied to analyze the effects of toxic Microcystis aeruginosa on the silver carp Hypophthalmichthys molitrix. Silver carps were exposed to two cyanobacteria species (toxic and non-toxic) for RNA-seq and miRNA-seq analysis. RNA-seq revealed that the liver tissue contained 105,379 unigenes. Of these genes, 143 were significantly differentiated, 82 were markedly up-regulated, and 61 were remarkably down-regulated. GO term enrichment analysis indicated that 35 of the 154 enriched GO terms were significantly enriched. KEGG pathway enrichment analysis demonstrated that 17 of the 118 enriched KEGG pathways were significantly enriched. A considerable number of disease/immune-associated GO terms and significantly enriched KEGG pathways were also observed. The sequence length determined by miRNA-seq was mainly distributed in 20-23 bp and composed of 882,620 unique small RNAs, and 53% of these RNAs were annotated to miRNAs. As confirmed, 272 known miRNAs were differentially expressed, 453 novel miRNAs were predicted, 112 miRNAs were well matched with 7,623 target genes, and 203 novel miRNAs were matched with 15,453 target genes. qPCR also indicated that Steap4, Cyp7a1, CABZ01088134.1, and PPP1R3G were significantly differentially expressed and might play major roles in the toxic, detoxifying, and antitoxic mechanisms of microcystin in fish.


Velocity storage mechanism drives a cerebellar clock for predictive eye velocity control.

  • Shuntaro Miki‎ et al.
  • Scientific reports‎
  • 2020‎

Predictive motor control is ubiquitously employed in animal kingdom to achieve rapid and precise motor action. In most vertebrates large, moving visual scenes induce an optokinetic response (OKR) control of eye movements to stabilize vision. In goldfish, the OKR was found to be predictive after a prolonged exposure to temporally periodic visual motion. A recent study showed the cerebellum necessary to acquire this predictive OKR (pOKR), but it remained unclear as to whether the cerebellum alone was sufficient. Herein we examined different fish species known to share the basic architecture of cerebellar neuronal circuitry for their ability to acquire pOKR. Carps were shown to acquire pOKR like goldfish while zebrafish and medaka did not, demonstrating the cerebellum alone not to be sufficient. Interestingly, those fish that acquired pOKR were found to exhibit long-lasting optokinetic after nystagmus (OKAN) as opposed to those that didn't. To directly manipulate OKAN vestibular-neurectomy was performed in goldfish that severely shortened OKAN, but pOKR was acquired comparable to normal animals. These results suggest that the neuronal circuitry producing OKAN, known as the velocity storage mechanism (VSM), is required to acquire pOKR irrespective of OKAN duration. Taken together, we conclude that pOKR is acquired through recurrent cerebellum-brainstem parallel loops in which the cerebellum adjusts VSM signal flow and, in turn, receives appropriately timed eye velocity information to clock visual world motion.


Identification and restoration of hydrological processes alteration during the fish spawning period.

  • Yang Yu‎ et al.
  • Scientific reports‎
  • 2023‎

The hydrological processes play an important role in stimulating fish spawning behavior. Changes in the natural hydrological processes will alter the populations and distribution of fish, which may have a negative impact on the native aquatic organisms. The aim of this study is to identify the alteration of the water rising process during the fish spawning period and to construct an ecological flow optimization model to restore the water rising conditions for fish reproduction. The Mann-Kendall test and the sliding t-test were used to detect the mutation year of the mean daily flow data sets in the fish spawning period in each monitoring year. Then the data sets can be divided into pre-altered and post-altered periods. The water rising process was characterized by the water rising processes count, the duration, the daily flow increase rate, the date of the water rising process, and the initial water rising flow. The changes in hydrological processes in the middle reaches of the Yangtze River were investigated by comparing the post-altered and pre-altered characteristic parameters. Furthermore, we integrated the statistical values of the five characteristic parameters in pre-altered into an ecological flow optimization model to simulate the natural water rising processes for the spawning of the Four Major Chinese Carps (FMCC) and Chinese Sturgeon (CS). The analysis showed that after the hydrological mutation year, the duration and the initial water rising flow in the FMCC spawning season were increased, with hydrological alteration degrees of 63.10% and 70.16%, respectively; however, the daily flow increase rate was significantly decreased, with hydrological alteration of 86.50%. During the CS spawning season, the water rising processes count and the initial water rising flow were dramatically altered parameters, with hydrological alteration degrees of 50.86% and 83.27%, respectively. The former parameter increased, but the latter decreased significantly in the post-altered period. To induce the spawning activity of FMCC and CS, appropriate ecological flows and hydrological parameters were proposed. These results showed that during the spawning seasons of FMCC and CS, the hydrological processes of the middle reaches of the Yangtze River changed significantly. Therefore, ecological flow must be ensured through ecological operation of upstream reservoirs to provide suitable spawning conditions in target fish spawning grounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: