Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Role of the hippocampal CA1 region in incremental value learning.

  • Yeongseok Jeong‎ et al.
  • Scientific reports‎
  • 2018‎

It is generally believed that the hippocampus plays a crucial role in declarative memory-remembering facts and events-but not in gradual stimulus-response association or incremental value learning. Based on the finding that CA1 conveys strong value signals during dynamic foraging, we investigated the possibility that the hippocampus contributes to incremental value learning. Specifically, we examined effects of inactivating different subregions of the dorsal hippocampus on behavioral performance of mice performing a dynamic foraging task in a modified T-maze. A reinforcement learning model-based analysis indicated that inactivation of CA1, but not dentate gyrus, CA3, or CA2, impaired trial-by-trial updating of chosen value without affecting value-dependent action selection. As a result, it took longer for CA1-inactivated mice to bias their choices toward the higher-reward-probability target after changes in reward probability. Our results indicate, contrary to the traditional view, that the hippocampus, especially CA1, might contribute to incremental value learning under certain circumstances.


Stereotypical patterns of epileptiform calcium signal in hippocampal CA1, CA3, dentate gyrus and entorhinal cortex in freely moving mice.

  • Xin Zhang‎ et al.
  • Scientific reports‎
  • 2019‎

Epilepsy is a multi-etiological brain dysfunction syndrome. Hippocampal neuronal damage induced by seizures may be one of the causes leading to cognitive impairment, but the underlying mechanism remains to be further elucidated. The kainic acid (KA) model of temporal lobe epilepsy is widely used in understanding of the epileptogenesis. Fiber photometry is a signal detection technology suitable for recording calcium activity of neurons in the deep brain of freely moving animal. Here, we used the optical fiber-based method to monitor the real-time neuronal population activities of freely moving mice after subcutaneous injection of KA. We observed that KA administration led to one to three kinds of stereotypical patterns of epileptiform calcium activity in CA1, CA3, and dentate gyrus (DG) of the hippocampus, as well as the entorhinal cortex (EC). There were three kinds of waves in the hippocampal CA1, which we named wave 1, wave 2 and slow flash. Wave 1 and wave 2 appeared in both the CA3 and DG regions, but the EC only showed wave 1. In these epileptiform calcium signals, we observed a high amplitude and long duration calcium wave as a part of wave 2, which resembled cortical spreading depression (CSD) and always appeared at or after the end of seizure. Because the same characteristic of epileptiform calcium signal appeared in different brain regions, calcium signal may not exist with region specificity, but may exhibit a cell type specific manner. Thus, our work provides a support for the pathogenesis of epilepsy and epileptiform signal transmission research.


Transcriptomic analysis reveals distinct adaptive molecular mechanism in the hippocampal CA3 from rats susceptible or not-susceptible to hyperthermia-induced seizures.

  • Silvia Y Bando‎ et al.
  • Scientific reports‎
  • 2023‎

Febrile seizures during early childhood are a relevant risk factor for the development of mesial temporal lobe epilepsy. Nevertheless, the molecular mechanism induced by febrile seizures that render the brain susceptible or not-susceptible to epileptogenesis remain poorly understood. Because the temporal investigation of such mechanisms in human patients is impossible, rat models of hyperthermia-induced febrile seizures have been used for that purpose. Here we conducted a temporal analysis of the transcriptomic and microRNA changes in the ventral CA3 of rats that develop (HS group) or not-develop (HNS group) seizures after hyperthermic insult on the eleventh postnatal day. The selected time intervals corresponded to acute, latent, and chronic phases of the disease. We found that the transcriptional differences between the HS and the HNS groups are related to inflammatory pathways, immune response, neurogenesis, and dendritogenesis in the latent and chronic phases. Additionally, the HNS group expressed a greater number of miRNAs (some abundantly expressed) as compared to the HS group. These results indicate that HNS rats were able to modulate their inflammatory response after insult, thus presenting better tissue repair and re-adaptation. Potential therapeutic targets, including genes, miRNAs and signaling pathways involved in epileptogenesis were identified.


Cell type, sub-region, and layer-specific speed representation in the hippocampal-entorhinal circuit.

  • Motosada Iwase‎ et al.
  • Scientific reports‎
  • 2020‎

It has been hypothesised that speed information, encoded by 'speed cells', is important for updating spatial representation in the hippocampus and entorhinal cortex to reflect ongoing self-movement during locomotion. However, systematic characterisation of speed representation is still lacking. In this study, we compared the speed representation of distinct cell types across sub-regions/layers in the dorsal hippocampus and medial entorhinal cortex of rats during exploration. Our results indicate that the preferred theta phases of individual neurons are correlated with positive/negative speed modulation and a temporal shift of speed representation in a sub-region/layer and cell type-dependent manner. Most speed cells located in entorhinal cortex layer 2 represented speed prospectively, whereas those in the CA1 and entorhinal cortex layers 3 and 5 represented speed retrospectively. In entorhinal cortex layer 2, putative CA1-projecting pyramidal cells, but not putative dentate gyrus/CA3-projecting stellate cells, represented speed prospectively. Among the hippocampal interneurons, approximately one-third of putative dendrite-targeting (somatostatin-expressing) interneurons, but only a negligible fraction of putative soma-targeting (parvalbumin-expressing) interneurons, showed negative speed modulation. Putative parvalbumin-expressing CA1 interneurons and somatostatin-expressing CA3 interneurons represented speed more retrospectively than parvalbumin-expressing CA3 interneurons. These findings indicate that speed representation in the hippocampal-entorhinal circuit is cell-type, pathway, and theta-phase dependent.


Fluorescence laser microdissection reveals a distinct pattern of gene activation in the mouse hippocampal region.

  • Wataru Yoshioka‎ et al.
  • Scientific reports‎
  • 2012‎

A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.


Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer's disease.

  • Ming Wang‎ et al.
  • Scientific reports‎
  • 2019‎

Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer's disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.


Subicular activation preceding hippocampal ripples in vitro.

  • Hiroaki Norimoto‎ et al.
  • Scientific reports‎
  • 2013‎

Sharp wave-ripple complexes (SW-Rs), a transient form of high-frequency field oscillations observed in the hippocampus, are thought to mediate memory consolidation. They are initiated mainly in hippocampal CA3 area and propagate to the entorhinal cortex through the subiculum; however, little is known about how SW-Rs are initiated and propagate. Here, we used functional multineuronal calcium imaging to monitor SW-R-relevant neuronal activity from the subiculum at single-cell resolution. An unexpected finding was that a subset of subicular neurons was activated immediately before hippocampal SW-Rs. The SW-R-preceding activity was not abolished by surgical lesion of the CA1-to-subiculum projection, and thus, it probably arose from entorhinal inputs. Therefore, SW-Rs are likely to be triggered by entorhinal-to-CA3/CA1 inputs. Moreover, the subiculum is not merely a passive intermediate region that SW-Rs pass through, but rather, it seems to contribute to an active modification of neural information related to SW-Rs.


Hair cortisol concentrations are associated with hippocampal subregional volumes in children.

  • Attila Keresztes‎ et al.
  • Scientific reports‎
  • 2020‎

The human hippocampus, a brain structure crucial for memory across the lifespan, is highly sensitive to adverse life events. Stress exposures during childhood have been linked to altered hippocampal structure and memory performance in adulthood. Animal studies suggest that these differences are in part driven by aberrant glucocorticoid secretion during development, with strongest effects on the CA3 region and the dentate gyrus (CA3-DG) of the hippocampus, alongside associated memory impairments. However, only few pediatric studies have examined glucocorticoid associations with hippocampal subfield volumes and their functional relevance. In 84 children (age range: 6-7 years), we assessed whether volumes of hippocampal subregions were related to cumulative glucocorticoid levels (hair cortisol), parenting stress, and performance on memory tasks known to engage the hippocampus. We found that higher hair cortisol levels were specifically related to lower CA3-DG volume. Parenting stress did not significantly correlate with hair cortisol, and there was no evidence to suggest that individual differences in hippocampal subregional volumes manifest in memory performance. Our results suggest that the CA3-DG may be the hippocampal region most closely associated with hair cortisol levels in childhood. Establishing causal pathways underlying this association and its relation to environmental stress and memory development necessitates longitudinal studies.


CAPS1 is involved in hippocampal synaptic plasticity and hippocampus-associated learning.

  • Chiaki Ishii‎ et al.
  • Scientific reports‎
  • 2021‎

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation.

  • Mariana M Fontes‎ et al.
  • Scientific reports‎
  • 2017‎

Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.


Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons.

  • Jae Won Kyung‎ et al.
  • Scientific reports‎
  • 2017‎

The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment.


Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice.

  • Giada Cellot‎ et al.
  • Scientific reports‎
  • 2016‎

Coherent network oscillations (GDPs), generated in the immature hippocampus by the synergistic action of GABA and glutamate, both depolarizing and excitatory, play a key role in the construction of neuronal circuits. In particular, GDPs-associated calcium transients act as coincident detectors for enhancing synaptic efficacy at emerging GABAergic and glutamatergic synapses. Here, we show that, immediately after birth, in the CA3 hippocampal region of the BTBR T+tf/J mouse, an animal model of idiopathic autism, GDPs are severely impaired. This effect was associated with an increased GABAergic neurotransmission and a reduced neuronal excitability. In spite its depolarizing action on CA3 pyramidal cells (in single channel experiments EGABA was positive to Em), GABA exerted at the network level an inhibitory effect as demonstrated by isoguvacine-induced reduction of neuronal firing. We implemented a computational model in which experimental findings could be interpreted as the result of two competing effects: a reduction of the intrinsic excitability of CA3 principal cells and a reduction of the shunting activity in GABAergic interneurons projecting to principal cells. It is therefore likely that premature changes in neuronal excitability within selective hippocampal circuits of BTBR mice lead to GDPs dysfunction and behavioral deficits reminiscent of those found in autistic patients.


Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer's disease.

  • Hang Thi Vu‎ et al.
  • Scientific reports‎
  • 2017‎

Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer's disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration.


Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy.

  • Selvin Z Reyes-Garcia‎ et al.
  • Scientific reports‎
  • 2018‎

Human hippocampal slice preparations from patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) are excellent material for the characterization of epileptiform-like activity. However, it is still unknown if hippocampal regions as cornu Ammonis (CA) 1, CA3 and CA4, generate population epileptiform-like activity. Here, we investigated epileptiform activities of the subiculum, CA1, CA2, CA3, CA4 (induced by elevation of extracellular potassium concentration) and the dentate gyrus (induced with hilar stimulation and elevation of potassium concentration) from sclerotic hippocampi of patients with drug-resistant TLE. Five types of epileptiform-like activity were observed: interictal-like events; periodic ictal spiking; seizure-like events; spreading depression-like events; tonic seizure-like events and no activity. Different susceptibilities to generate epileptiform activity among hippocampal regions were observed; the dentate gyrus was the most susceptible region followed by the subiculum, CA4, CA1, CA2 and CA3. The incidence of epileptiform activity pattern was associated with specific regions of the hippocampal formation. Moreover, it was observed that each region of the hippocampal formation exhibits frequency-specific ranges in each subfield of the sclerotic human tissue. In conclusion, this study demonstrates that epileptiform-like activity may be induced in different regions of the hippocampal formation, including regions that are severely affected by neuronal loss.


Metabolic basis of neuronal vulnerability to ischemia; an in vivo untargeted metabolomics approach.

  • Sherif Rashad‎ et al.
  • Scientific reports‎
  • 2020‎

Understanding the root causes of neuronal vulnerability to ischemia is paramount to the development of new therapies for stroke. Transient global cerebral ischemia (tGCI) leads to selective neuronal cell death in the CA1 sub-region of the hippocampus, while the neighboring CA3 sub-region is left largely intact. By studying factors pertaining to such selective vulnerability, we can develop therapies to enhance outcome after stroke. Using untargeted liquid chromatography-mass spectrometry, we analyzed temporal metabolomic changes in CA1 and CA3 hippocampal areas following tGCI in rats till the setting of neuronal apoptosis. 64 compounds in CA1 and 74 in CA3 were found to be enriched and statistically significant following tGCI. Pathway analysis showed that pyrimidine and purine metabolism pathways amongst several others to be enriched after tGCI in CA1 and CA3. Metabolomics analysis was able to capture very early changes following ischemia. We detected 6 metabolites to be upregulated and 6 to be downregulated 1 hour after tGCI in CA1 versus CA3. Several metabolites related to apoptosis and inflammation were differentially expressed in both regions after tGCI. We offer a new insight into the process of neuronal apoptosis, guided by metabolomic profiling that was not performed to such an extent previously.


Hsp60 response in experimental and human temporal lobe epilepsy.

  • Antonella Marino Gammazza‎ et al.
  • Scientific reports‎
  • 2015‎

The mitochondrial chaperonin Hsp60 is a ubiquitous molecule with multiple roles, constitutively expressed and inducible by oxidative stress. In the brain, Hsp60 is widely distributed and has been implicated in neurological disorders, including epilepsy. A role for mitochondria and oxidative stress has been proposed in epileptogenesis of temporal lobe epilepsy (TLE). Here, we investigated the involvement of Hsp60 in TLE using animal and human samples. Hsp60 immunoreactivity in the hippocampus, measured by Western blotting and immunohistochemistry, was increased in a rat model of TLE. Hsp60 was also increased in the hippocampal dentate gyrus neurons somata and neuropil and hippocampus proper (CA3, CA1) of the epileptic rats. We also determined the circulating levels of Hsp60 in epileptic animals and TLE patients using ELISA. The epileptic rats showed circulating levels of Hsp60 higher than controls. Likewise, plasma post-seizure Hsp60 levels in patients were higher than before the seizure and those of controls. These results demonstrate that Hsp60 is increased in both animals and patients with TLE in affected tissues, and in plasma in response to epileptic seizures, and point to it as biomarker of hippocampal stress potentially useful for diagnosis and patient management.


Low-level Gestational Lead Exposure Alters Dendritic Spine Plasticity in the Hippocampus and Reduces Learning and Memory in Rats.

  • Zai-Hua Zhao‎ et al.
  • Scientific reports‎
  • 2018‎

Lead (Pb) is known to impair children's cognitive function. It has been previously shown that developmental Pb exposure alters dendritic spine formation in hippocampal pyramidal neurons. However, the underlying mechanism has not yet been defined. In this study, a low-level gestational Pb exposure (GLE) rat model was employed to investigate the impact of Pb on the spine density of the hippocampal pyramidal neurons and its regulatory mechanism. Pb exposure resulted in impaired performance of the rats in the Morris water maze tasks, and in decreased EPSC amplitudes in hippocampal CA3-CA1 regions. With a 3D reconstruction by the Imaris software, the results from Golgi staining showed that the spine density in the CA1 region was reduced in the Pb-exposed rats in a dose-dependent manner. Decreased spine density was also observed in cultured hippocampal neurons following the Pb treatment. Furthermore, the expression level of NLGN1, a postsynaptic protein that mediates synaptogenesis, was significantly decreased following the Pb exposure both in vivo and in vitro. Up-regulation of NLGN1 in cultured primary neurons partially attenuated the impact of Pb on the spine density. Taken together, our resultssuggest that Pb exposure alters spine plasticity in the developing hippocampus by down-regulating NLGN1 protein levels.


Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity.

  • Jerome Ezan‎ et al.
  • Scientific reports‎
  • 2021‎

Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.


Identification of postsynaptic phosphatidylinositol-4,5-bisphosphate (PIP2) roles for synaptic plasticity using chemically induced dimerization.

  • Su-Jeong Kim‎ et al.
  • Scientific reports‎
  • 2017‎

Phosphatidylinositol-4,5-bisphosphate (PIP2), one of the key phospholipids, directly interacts with several membrane and cytosolic proteins at neuronal plasma membranes, leading to changes in neuronal properties including the feature and surface expression of ionotropic receptors. Although PIP2 is also concentrated at the dendritic spines, little is known about the direct physiological functions of PIP2 at postsynaptic as opposed to presynaptic sites. Most previous studies used genetic and pharmacological methods to modulate enzymes that alter PIP2 levels, making it difficult to delineate time- or region-specific roles of PIP2. We used chemically-induced dimerization to translocate inositol polyphosphate 5-phosphatase (Inp54p) to plasma membranes in the presence of rapamycin. Upon redistribution of Inp54p, long-term depression (LTD) induced by low-frequency stimulation was blocked in the mouse hippocampal CA3-CA1 pathway, but the catalytically-dead mutant did not affect LTD induction. Collectively, PIP2 is critically required for induction of LTD whereas translocation of Inp54p to plasma membranes has no effect on the intrinsic properties of the neurons, basal synaptic transmission, long-term potentiation or expression of LTD.


Chronic infection with Mycobacterium lepraemurium induces alterations in the hippocampus associated with memory loss.

  • Enrique Becerril-Villanueva‎ et al.
  • Scientific reports‎
  • 2018‎

Murine leprosy, caused by Mycobacterium lepraemurium (MLM), is a chronic disease that closely resembles human leprosy. Even though this disease does not directly involve the nervous system, we investigated a possible effect on working memory during this chronic infection in Balb/c mice. We evaluated alterations in the dorsal region of the hippocampus and measured peripheral levels of cytokines at 40, 80, and 120 days post-infection. To evaluate working memory, we used the T-maze while a morphometric analysis was conducted in the hippocampus regions CA1, CA2, CA3, and dentate gyrus (DG) to measure morphological changes. In addition, a neurochemical analysis was performed by HPLC. Our results show that, at 40 days post-infection, there was an increase in the bacillary load in the liver and spleen associated to increased levels of IL-4, working memory deterioration, and changes in hippocampal morphology, including degeneration in the four subregions analyzed. Also, we found a decrease in neurotransmitter levels at the same time of infection. Although MLM does not directly infect the nervous system, these findings suggest a possible functional link between the immune system and the central nervous system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: