Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Dramatically reduced spliceosome in Cyanidioschyzon merolae.

  • Martha R Stark‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

The human spliceosome is a large ribonucleoprotein complex that catalyzes pre-mRNA splicing. It consists of five snRNAs and more than 200 proteins. Because of this complexity, much work has focused on the Saccharomyces cerevisiae spliceosome, viewed as a highly simplified system with fewer than half as many splicing factors as humans. Nevertheless, it has been difficult to ascribe a mechanistic function to individual splicing factors or even to discern which are critical for catalyzing the splicing reaction. We have identified and characterized the splicing machinery from the red alga Cyanidioschyzon merolae, which has been reported to harbor only 26 intron-containing genes. The U2, U4, U5, and U6 snRNAs contain expected conserved sequences and have the ability to adopt secondary structures and form intermolecular base-pairing interactions, as in other organisms. C. merolae has a highly reduced set of 43 identifiable core splicing proteins, compared with ∼90 in budding yeast and ∼140 in humans. Strikingly, we have been unable to find a U1 snRNA candidate or any predicted U1-associated proteins, suggesting that splicing in C. merolae may occur without the U1 small nuclear ribonucleoprotein particle. In addition, based on mapping the identified proteins onto the known splicing cycle, we propose that there is far less compositional variability during splicing in C. merolae than in other organisms. The observed reduction in splicing factors is consistent with the elimination of spliceosomal components that play a peripheral or modulatory role in splicing, presumably retaining those with a more central role in organization and catalysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: