Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Duodenases are a small subfamily of ruminant intestinal serine proteases that have undergone a remarkable diversification in cleavage specificity.

  • Zhirong Fu‎ et al.
  • PloS one‎
  • 2021‎

Ruminants have a very complex digestive system adapted for the digestion of cellulose rich food. Gene duplications have been central in the process of adapting their digestive system for this complex food source. One of the new loci involved in food digestion is the lysozyme c locus where cows have ten active such genes compared to a single gene in humans and where four of the bovine copies are expressed in the abomasum, the real stomach. The second locus that has become part of the ruminant digestive system is the chymase locus. The chymase locus encodes several of the major hematopoietic granule proteases. In ruminants, genes within the chymase locus have duplicated and some of them are expressed in the duodenum and are therefore called duodenases. To obtain information on their specificities and functions we produced six recombinant proteolytically active duodenases (three from cows, two from sheep and one from pigs). Two of the sheep duodenases were found to be highly specific tryptases and one of the bovine duodenases was a highly specific asp-ase. The remaining two bovine duodenases were dual enzymes with potent tryptase and chymase activities. In contrast, the pig enzyme was a chymase with no tryptase or asp-ase activity. These results point to a remarkable flexibility in both the primary and extended specificities within a single chromosomal locus that most likely has originated from one or a few genes by several rounds of local gene duplications. Interestingly, using the consensus cleavage site for the bovine asp-ase to screen the entire bovine proteome, it revealed Mucin-5B as one of the potential targets. Using the same strategy for one of the sheep tryptases, this enzyme was found to have potential cleavage sites in two chemokine receptors, CCR3 and 7, suggesting a role for this enzyme to suppress intestinal inflammation.


Generation of a new congenic mouse strain with enhanced chymase expression in mast cells.

  • Xi Jin‎ et al.
  • PloS one‎
  • 2013‎

Mast cells are effector cells best known for their roles in IgE-associated allergy, but they also play a protective role in defense against pathogens. These cells express high levels of proteases including chymase, tryptase and carboxypeptidase. In the present study, we identified a congenic strain of C57BL/6 mice expressing an extraordinarily high level of chymases Mcp-2 and Mcp-4 in mast cells. The overexpression was associated with variant Mcp-2 and Mcp-4 genes originated from DBA/2 mice that also expressed high levels of the two enzymes. Real time PCR analysis revealed that Mcp-2 and Mcp-4 were selectively overexpressed as tryptases, Cpa3 and several other chymases were kept at normal levels. Reporter gene assays demonstrated that single-nucleotide polymorphisms (SNPs) in the promoter region of Mcp-2 gene may be partly responsible for the increased gene transcription. Our study provides a new model system to study the function of mast cell chymases. The data also suggest that expression of chymases differs considerably in different strains of mice and the increased chymase activity may be responsible for some unique phenotypes observed in DBA/2 mice.


A simple, sensitive and safe method to determine the human α/β-tryptase genotype.

  • Quang Trong Le‎ et al.
  • PloS one‎
  • 2014‎

The human tryptase locus on chromosome 16 contains one gene encoding only β-tryptase and another encoding either β-tryptase or the homologous α-tryptase, providing α:β gene ratios of 0:4, 1:3 or 2:2 in the diploid genome, these genotypes being of potential clinical relevance in severe atopy. Using an EcoRV restriction site in α- but not β-tryptase, PCR products, spanning intron 1 to exon 5, were used to determine α/β-tryptase gene ratios using non-radioactive labels, including ethidium bromide labeling of all PCR products, and either digoxigenin-primer or DY682-primer labeling of only the final PCR cycle products. Sensitivity increased ∼60-fold with each final PCR cycle labeling technique. Ethidium bromide labeling underestimated amounts of α-tryptase, presumably because heteroduplexes of α/β-tryptase amplimers, formed during annealing, were EcoRV resistant. In contrast, both final PCR cycle labeling techniques precisely quantified these gene ratios, because only homoduplexes were labeled. Using the DY682-primer was most efficient, because PCR/EcoRV products could be analyzed directly in the gel; while digoxigenin-labeled products required transfer to a nitrocellulose membrane followed by immunoblotting. This technique for determining the α/β-tryptase genotype is sensitive, accurate, simple and safe, and should permit high-throughput screening to detect potential phenotype-genotype relations for α/β-tryptases, and for other closely related alleles.


Implantation serine proteinase 1 exhibits mixed substrate specificity that silences signaling via proteinase-activated receptors.

  • Navneet Sharma‎ et al.
  • PloS one‎
  • 2011‎

Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate specificity. We hypothesised that in isolation, ISP1 might have a unique substrate specificity that could relate to its role when expressed alone in individual tissues. Thus, we isolated recombinant ISP1 expressed in Pichia pastoris and evaluated its substrate specificity. Using several chromogenic substrates and serine proteinase inhibitors, we demonstrate that ISP1 exhibits trypsin-like substrate specificity, having a preference for lysine over arginine at the P1 position. Phage display peptide mimetics revealed an expanded but mixed substrate specificity of ISP1, including chymotryptic and elastase activity. Based upon targets observed using phage display, we hypothesised that ISP1 might signal to cells by cleaving and activating proteinase-activated receptors (PARs) and therefore assessed PARs 1, 2 and 4 as potential ISP1 targets. We observed that ISP1 silenced enzyme-triggered PAR signaling by receptor-disarming. This PAR-disarming action of ISP1 may be important for embryo development and implantation.


Expression of mast cell proteases correlates with mast cell maturation and angiogenesis during tumor progression.

  • Devandir Antonio de Souza‎ et al.
  • PloS one‎
  • 2012‎

Tumor cells are surrounded by infiltrating inflammatory cells, such as lymphocytes, neutrophils, macrophages, and mast cells. A body of evidence indicates that mast cells are associated with various types of tumors. Although role of mast cells can be directly related to their granule content, their function in angiogenesis and tumor progression remains obscure. This study aims to understand the role of mast cells in these processes. Tumors were chemically induced in BALB/c mice and tumor progression was divided into Phases I, II and III. Phase I tumors exhibited a large number of mast cells, which increased in phase II and remained unchanged in phase III. The expression of mouse mast cell protease (mMCP)-4, mMCP-5, mMCP-6, mMCP-7, and carboxypeptidase A were analyzed at the 3 stages. Our results show that with the exception of mMCP-4 expression of these mast cell chymase (mMCP-5), tryptases (mMCP-6 and 7), and carboxypeptidase A (mMC-CPA) increased during tumor progression. Chymase and tryptase activity increased at all stages of tumor progression whereas the number of mast cells remained constant from phase II to III. The number of new blood vessels increased significantly in phase I, while in phases II and III an enlargement of existing blood vessels occurred. In vitro, mMCP-6 and 7 are able to induce vessel formation. The present study suggests that mast cells are involved in induction of angiogenesis in the early stages of tumor development and in modulating blood vessel growth in the later stages of tumor progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: