Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 446 papers

Microbial reprogramming inhibits Western diet-associated obesity.

  • Theofilos Poutahidis‎ et al.
  • PloS one‎
  • 2013‎

A recent epidemiological study showed that eating 'fast food' items such as potato chips increased likelihood of obesity, whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse models consuming Westernized 'fast food' diet, and found CD4(+) T helper (Th)17-biased immunity and changes in microbial communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe effects were transferable into naïve recipient animals by purified CD4(+) T cells alone. Specifically, bacterial effects depended upon active immune tolerance by induction of Foxp3(+) regulatory T cells (Treg) and interleukin (Il)-10, without significantly changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4(+) T cell balance and yielded significantly leaner animals regardless of their dietary 'fast food' indiscretions suggests population-based approaches for weight management and enhancing public health in industrialized societies.


Diet improvement for western corn rootworm (Coleoptera: Chrysomelidae) larvae.

  • Man P Huynh‎ et al.
  • PloS one‎
  • 2017‎

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is the most serious insect pest of corn (Zea mays L.) in the United States and parts of Europe, and arguably one of the world's most expensive pests to control. Several diet formulations are currently used by industry and public researchers to evaluate WCR larvae in diet-toxicity bioassays. However, a publicly available diet that produces normative insects that are physiologically similar to WCR larvae reared on corn roots will accelerate development of management technologies. We report a new diet formulation that supports improved weight gain, larval development and survival compared with the only public diet for WCR that is currently available in the refereed literature. The formulation was created by using response surface methods combined with n-dimensional mixture designs to identify and improve the formulation of key ingredients. Weight gain increased two-fold, and survival and molting rates increased from 93% and 90%, respectively when reared on the public diet, to approximately 99% for both survival and molting at 11 days when reared on our new formulation. This new formulation provides a standardized growth medium for WCR larvae that will facilitate comparison of research results from various working groups and compliance with regulatory requirements.


Concomitant western diet and chronic-binge alcohol dysregulate hepatic metabolism.

  • Delfin Gerard Buyco‎ et al.
  • PloS one‎
  • 2023‎

There is significant overlap between non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) with regards to risk factors and disease progression. However, the mechanism by which fatty liver disease arises from concomitant obesity and overconsumption of alcohol (syndrome of metabolic and alcohol-associated fatty liver disease; SMAFLD), is not fully understood.


Is Western Diet-Induced Nonalcoholic Steatohepatitis in Ldlr-/- Mice Reversible?

  • Kelli A Lytle‎ et al.
  • PloS one‎
  • 2016‎

Nonalcoholic fatty liver disease (NAFLD) is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss) is imperative.


Docosahexaenoic acid supplementation does not improve Western diet-induced cardiomyopathy in rats.

  • Kimberly M Jeckel‎ et al.
  • PloS one‎
  • 2012‎

Obesity increases risk for cardiomyopathy in the absence of hypertension, diabetes or ischemia. The fatty acid milieu, modulated by diet, may modify myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy. We sought to identify gross, cellular and ultrastructural myocardial changes associated with Western diet intake, and subsequent modification with docosahexaenoic acid (DHA) supplementation. Wistar and Sprague-Dawley (SD) rats received 1 of 3 diets: control (CON); Western (WES); Western + DHA (WES+DHA). After 12 weeks of treatment, echocardiography was performed and myocardial adiponectin, fatty acids, collagen, area occupied by lipid and myocytes, and ultrastructure were determined. Strain effects included higher serum adiponectin in Wistar rats, and differences in myocardial fatty acid composition. Diet effects were evident in that both WES and WES+DHA feeding were associated with similarly increased left ventricular (LV) diastolic cranial wall thickness (LVW(cr/d)) and decreased diastolic internal diameter (LVID(d)), compared to CON. Unexpectedly, WES+DHA feeding was associated additionally with increased thickness of the LV cranial wall during systole (LVW(cr/s)) and the caudal wall during diastole (LVW(ca/d)) compared to CON; this was observed concomitantly with increased serum and myocardial adiponectin. Diastolic dysfunction was present in WES+DHA rats compared to both WES and CON. Myocyte cross sectional area (CSA) was greater in WES compared to CON rats. In both fat-fed groups, transmission electron microscopy (TEM) revealed myofibril degeneration, disorganized mitochondrial cristae, lipid inclusions and vacuolation. In the absence of hypertension and whole body insulin resistance, WES+DHA intake was associated with more global LV thickening and with diastolic dysfunction, compared to WES feeding alone. Myocyte hypertrophy, possibly related to subcellular injury, is an early change that may contribute to gross hypertrophy. Strain differences in adipokines and myocardial fatty acid accretion may underlie heterogeneous data from rodent studies.


Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific.

  • Seinen Chow‎ et al.
  • PloS one‎
  • 2019‎

Natural diets of leptocephalus larvae have been enigmatic. In this study, we collected DNA samples from the gut contents and body surface of leptocephali belonging to the five Anguilliform families (Anguillidae, Chlopsidae, Congridae, Muraenidae, and Serrivomeridae) from the northwest Pacific and performed next-generation 18S rDNA sequencing. Wide variety of eukaryotes was detected in both samples, from which eight eukaryotic groups (jellyfish, conoid parasite, tunicate, copepod, krill, segmented worm, fungi, and dinoflagellate) were selected on the basis of abundance. All groups except conoid parasites were common in both the samples. Cnidarian 18S rDNA reads were the most abundant in both the samples; however, the number of samples having cnidarian reads and the read counts were significantly higher in the body surface scraping samples than in the gut content samples, regardless of careful rinsing of the body surface. These results indicate that the cnidarian DNAs are most likely found because of cross contamination from the body surface and/or environment. 18S rDNA read counts of copepod and tunicate in the gut contents were greater than or comparable with those in the body surface scraping samples, which may correspond to the previous observations of fecal pellets and larvacean houses in the leptocephali gut. Thus, the present study supports previous implications that leptocephali utilize detritus materials, so called marine snow.


Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context.

  • Monica Barone‎ et al.
  • PloS one‎
  • 2019‎

The modern Paleolithic diet (MPD), featured by the consumption of vegetables, fruit, nuts, seeds, eggs, fish and lean meat, while excluding grains, dairy products, salt and refined sugar, has gained substantial public attention in recent years because of its potential multiple health benefits. However, to date little is known about the actual impact of this dietary pattern on the gut microbiome (GM) and its implications for human health. In the current scenario where Western diets, low in fiber while rich in industrialized and processed foods, are considered one of the leading causes of maladaptive GM changes along human evolution, likely contributing to the increasing incidence of chronic non-communicable diseases, we hypothesize that the MPD could modulate the Western GM towards a more "ancestral" configuration. In an attempt to shed light on this, here we profiled the GM structure of urban Italian subjects adhering to the MPD, and compared data with other urban Italians following a Mediterranean Diet (MD), as well as worldwide traditional hunter-gatherer populations from previous publications. Notwithstanding a strong geography effect on the GM structure, our results show an unexpectedly high degree of biodiversity in MPD subjects, which well approximates that of traditional populations. The GM of MPD individuals also shows some peculiarities, including a high relative abundance of bile-tolerant and fat-loving microorganisms. The consumption of plant-based foods-albeit with the exclusion of grains and pulses-along with the minimization of the intake of processed foods, both hallmarks of the MPD, could therefore contribute to partially rewild the GM but caution should be taken in adhering to this dietary pattern in the long term.


Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr-/- mice.

  • Kelli A Lytle‎ et al.
  • PloS one‎
  • 2017‎

Nonalcoholic fatty liver disease (NAFLD) is a major public health concern in western societies. Nonalcoholic steatohepatitis (NASH), the progressive form of NAFLD, is characterized by hepatic steatosis, inflammation, oxidative stress and fibrosis. NASH is a risk factor for cirrhosis and hepatocellular carcinoma. NASH is predicted to be the leading cause of liver transplants by 2020. Despite this growing public health concern, there remain no Food and Drug Administration (FDA) approved NASH treatments. Using Ldlr -/- mice as a preclinical model of western diet (WD)-induced NASH, we previously established that dietary supplementation with docosahexaenoic acid (DHA, 22:6,ω3) attenuated WD-induced NASH in a prevention study. Herein, we evaluated the capacity of DHA supplementation of the WD and a low fat diet to fully reverse NASH in mice with pre-existing disease.


A Western-fed diet increases plasma HDL and LDL-cholesterol levels in apoD-/- mice.

  • Kamilah Ali‎ et al.
  • PloS one‎
  • 2014‎

Plasma apolipoprotein (apo)D, a ubiquitously expressed protein that binds small hydrophobic ligands, is found mainly on HDL particles. According to studies of human genetics and lipid disorders, plasma apoD levels positively correlate with HDL-cholesterol and apoAI levels. Thus, we tested the hypothesis that apoD was a regulator of HDL metabolism.


Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

  • Shian-Huey Chiang‎ et al.
  • PloS one‎
  • 2015‎

Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.


Cancer-predicting gene expression changes in colonic mucosa of Western diet fed Mlh1+/- mice.

  • Marjaana Pussila‎ et al.
  • PloS one‎
  • 2013‎

Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in the Western world and interactions between genetic and environmental factors, including diet, are suggested to play a critical role in its etiology. We conducted a long-term feeding experiment in the mouse to address gene expression and methylation changes arising in histologically normal colonic mucosa as putative cancer-predisposing events available for early detection. The expression of 94 growth-regulatory genes previously linked to human CRC was studied at two time points (5 weeks and 12 months of age) in the heterozygote Mlh1(+/-) mice, an animal model for human Lynch syndrome (LS), and wild type Mlh1(+/+) littermates, fed by either Western-style (WD) or AIN-93G control diet. In mice fed with WD, proximal colon mucosa, the predominant site of cancer formation in LS, exhibited a significant expression decrease in tumor suppressor genes, Dkk1, Hoxd1, Slc5a8, and Socs1, the latter two only in the Mlh1(+/-) mice. Reduced mRNA expression was accompanied by increased promoter methylation of the respective genes. The strongest expression decrease (7.3 fold) together with a significant increase in its promoter methylation was seen in Dkk1, an antagonist of the canonical Wnt signaling pathway. Furthermore, the inactivation of Dkk1 seems to predispose to neoplasias in the proximal colon. This and the fact that Mlh1 which showed only modest methylation was still expressed in both Mlh1(+/-) and Mlh1(+/+) mice indicate that the expression decreases and the inactivation of Dkk1 in particular is a prominent early marker for colon oncogenesis.


Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr -/- mice.

  • Manuel Garcia-Jaramillo‎ et al.
  • PloS one‎
  • 2019‎

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, particularly in obese and type 2 diabetic individuals. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH); and NASH can progress to cirrhosis, primary hepatocellular carcinoma (HCC) and liver failure. As such, NAFLD has emerged as a major public health concern. Herein, we used a lipidomic and transcriptomic approach to identify lipid markers associated with western diet (WD) induced NASH in female mice.


Pharmacological Treatment with Annexin A1 Reduces Atherosclerotic Plaque Burden in LDLR-/- Mice on Western Type Diet.

  • Dennis H M Kusters‎ et al.
  • PloS one‎
  • 2015‎

To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice.


Impact of maternal western diet-induced obesity on offspring mortality and peripheral endocannabinoid system in mice.

  • Pedro A Perez‎ et al.
  • PloS one‎
  • 2018‎

Over two-thirds of adults in the United States are obese or overweight, which is largely due to chronic overconsumption of diets high in fats and sugars (i.e., Western diet). Recent studies reveal that maternal obesity may predispose offspring to development of obesity and other metabolic diseases; however, the molecular underpinnings of these outcomes are largely unknown. The endocannabinoid system is an important signaling pathway that controls feeding behavior and energy homeostasis, and its activity becomes upregulated in the upper small intestinal epithelium of Western diet-induced obese mice, which drives overeating. In the current investigation, we examined the impact of chronic maternal consumption of Western diet on the expression and function of the endocannabinoid system in several peripheral organs important for food intake and energy homeostasis in offspring. Female C57BL/6Tac mice were fed a Western diet or low-fat/no-sucrose control chow for 10 weeks, then males were introduced for mating. Dams were maintained on their respective diets through weaning of pups, at which time pups were maintained on low-fat/no-sucrose chow for 10 weeks. Neonates born from dams fed Western diet, when compared to those born from mice fed control chow, unexpectedly displayed increases in mortality that occurred exclusively within six days following birth (greater than 50% mortality). Males comprised a larger fraction of surviving offspring from obese dams. Furthermore, surviving offspring displayed transient increases in body mass for first two days post weaning, and no marked changes in feeding patterns and endocannabinoid levels in upper small intestinal epithelium, pancreas, and plasma, or in expression of key endocannabinoid system genes in the upper small intestinal epithelium and pancreas at 10 weeks post-weaning. Collectively, these results suggest that maternal diet composition greatly influences survival of neonate C57BL/6Tac mice, and that surviving offspring from dams chronically fed a Western diet do not display marked changes in body mass, eating patterns, or expression and function of the endocannabinoid system in several peripheral organs important for feeding behavior and energy homeostasis.


Time course of western diet (WD) induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice.

  • Melinda H Spooner‎ et al.
  • PloS one‎
  • 2023‎

Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identification of factors contributing to the onset and progression of NAFLD have the potential to direct novel strategies to combat NAFLD.


High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

  • Siddhartha S Ghosh‎ et al.
  • PloS one‎
  • 2015‎

A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.


Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

  • Rebecca E Ringling‎ et al.
  • PloS one‎
  • 2016‎

We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis.


Influence of total western diet on docosahexaenoic acid suppression of silica-triggered lupus flaring in NZBWF1 mice.

  • Kristen N Gilley‎ et al.
  • PloS one‎
  • 2020‎

Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet.


Bronze Age innovations and impact on human diet: A multi-isotopic and multi-proxy study of western Switzerland.

  • Alessandra Varalli‎ et al.
  • PloS one‎
  • 2021‎

The archaeological Bronze Age record in Europe reveals unprecedented changes in subsistence strategies due to innovative farming techniques and new crop cultivation. Increasing cultural exchanges affected the economic system. The inhabitants of Switzerland played a pivotal role in this European context through relationships with the Mediterranean, the High and Middle Danube regions and the Alps thanks to the area's central position. This research aims to reconstruct, for the first time in Switzerland, human socio-economic systems through the study of human diet, herding and farming practices and their changes throughout the Bronze Age (2200-800 BCE) by means of biochemical markers. The study includes 41 human, 22 terrestrial and aquatic animal specimens and 30 charred seeds and chaff samples from sites in western Switzerland. Stable isotope analyses were performed on cereal and legume seeds (δ13C, δ15N), animal bone collagen (δ13Ccoll, δ15N, δ34S), human bone and tooth dentine collagen (δ13Ccoll, δ15N,) and human tooth enamel (δ13Cenamel). The isotopic data suggest a) an intensification of soil fertilization and no hydric stress throughout the Bronze Age, b) a human diet mainly composed of terrestrial resources despite the proximity of Lake Geneva and the Rhone river, c) a diet based on C3 plants during the Early and Middle Bronze Age as opposed to the significant consumption of 13C-enriched resources (probably millet) by individuals from the Final Bronze Age, d) no important changes in dietary patterns throughout an individual's lifespan but a more varied diet in childhood compared to adulthood, e) no differences in diet according to biological criteria (age, sex) or funerary behavior (burial architecture, grave goods).


Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet.

  • Meng Zhang‎ et al.
  • PloS one‎
  • 2017‎

Oxidative stress and inflammatory factors are deeply involved in progression of atherosclerosis. Mitochondrion-targeted peptide SS-31, selectively targeting to mitochondrial inner membrane reacting with cardiolipin, has been reported to inhibit ROS generation and mitigate inflammation. The present study was designed to investigate whether SS-31 could suppress the development of atherosclerosis in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: