Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 196 papers

miR2118 Negatively Regulates Bacterial Blight Resistance through Targeting Several Disease Resistance Genes in Rice.

  • Xiumei Zhu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Plant miRNAs are a class of noncoding RNA with a length of 21-24 nt that play an important role in plant responses to biotic and abiotic stresses. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases in rice. Our previous work showed that osa-miR2118b/n was induced by Xoo infection. However, the biological function of miR2118 has not yet been characterized in experiments. Herein, we constructed MIR2118b OE, as well as single and double mutants of MIR2118b/n using CRISPR/Cas9. Further results showed that osa-MIR2118b OE plants exhibited longer lesion lengths than the wild type after Xoo inoculation, while MIR2118 CRISPR plants exhibited shorter lesion lengths than the wild type after Xoo inoculation. Co-transformation experiments in rice protoplasts indicated that osa-miR2118 negatively regulated the transcripts of three nucleotide-binding sites and leucine-rich repeat (NLR) genes (LOC_Os08g42700.1, LOC_Os01g05600.1, and LOC_Os12g37290.1) which are predicted target genes of miR2118, but not the mutated NLR genes with a 3 bp insertion at the center of the binding sites. The transcriptional level of the three NLR genes was reversed relative to osa-miR2118 in the MIR2118b OE and MIR2118b CRISPR plants. The above results demonstrate that osa-miR2118b/n negatively regulates the resistance to bacterial blight through negatively regulating several NLR genes.


Identification of Disease Resistance Parents and Genome-Wide Association Mapping of Resistance in Spring Wheat.

  • Muhammad Iqbal‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future.


Inheritance Pattern and Molecular Markers for Resistance to Blackleg Disease in Cabbage.

  • Mostari Jahan Ferdous‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

The inheritance and causal loci for resistance to blackleg, a devastating disease of Brassicaceous crops, are yet to be known in cabbage (Brassica oleracea L.). Here, we report the pattern of inheritance and linked molecular marker for this trait. A segregating BC1 population consisting of 253 plants was raised from resistant and susceptible parents, L29 (♀) and L16 (♂), respectively. Cotyledon resistance bioassay of BC1 population, measured based on a scale of 0-9 at 12 days after inoculation with Leptosphaeria maculans isolate 03-02 s, revealed the segregation of resistance and ratio, indicative of dominant monogenic control of the trait. Investigation of potential polymorphism in the previously identified differentially expressed genes within the collinear region of 'B. napus blackleg resistant loci Rlm1' in B. oleracea identified two insertion/deletion (InDel) mutations in the intron and numerous single nucleotide polymorphisms (SNPs) throughout the LRR-RLK gene Bol040029, of which six SNPs in the first exon caused the loss of two LRR domains in the susceptible line. An InDel marker, BLR-C-InDel based on the InDel mutations, and a high resolution melting (HRM) marker, BLR-C-2808 based on the SNP C2808T in the second exon were developed, which predicated the resistance status of the BC1 population with 80.24%, and of 24 commercial inbred lines with 100% detection accuracy. This is the first report of inheritance and molecular markers linked with blackleg resistance in cabbage. This study will enhance our understanding of the trait, and will be helpful in marker assisted breeding aiming at developing resistant cabbage varieties.


Yellow Leaf Disease Resistance and Melanaphis sacchari Preference in Commercial Sugarcane Cultivars.

  • Luiz Eduardo Tilhaqui Bertasello‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Sugarcane yellow leaf disease (YLD) caused by sugarcane yellow leaf virus (ScYLV) is a major threat for the sugarcane industry worldwide, and the aphid Melanaphis sacchari is its main vector. Breeding programs in Brazil have provided cultivars with intermediate resistance to ScYLV, whereas the incidence of ScYLV has been underestimated partly due to the complexity of YLD symptom expression and identification. Here, we evaluated YLD symptoms in a field assay using eight sugarcane genotypes comprising six well-established commercial high-sucrose cultivars, one biomass yield cultivar, and a susceptible reference under greenhouse conditions, along with estimation of virus titer through RT-qPCR from leaf samples. Additionally, a free-choice bioassay was used to determine the number of aphids feeding on the SCYLV-infected cultivars. Most of the cultivars showed some degree of resistance to YLD, while also revealing positive RT-qPCR results for ScYLV and virus titers with non-significant correlation with YLD severity. The cultivars IACSP01-5503 and IACBIO-266 were similar in terms of aphid preference and ScYLV resistance traits, whereas the least preferred cultivar by M. sacchari, IACSP96-7569, showed intermediate symptoms but similar virus titer to the susceptible reference, SP71-6163. We conclude that current genetic resistance incorporated into sugarcane commercial cultivars does not effectively prevent the spread of ScYLV by its main aphid vector.


Mapping of a Major QTL, qBK1Z, for Bakanae Disease Resistance in Rice.

  • Sais-Beul Lee‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Bakanae disease is a fungal disease of rice (Oryza sativa L.) caused by the pathogen Gibberella fujikuroi (also known as Fusarium fujikuroi). This study was carried out to identify novel quantitative trait loci (QTLs) from an indica variety Zenith. We performed a QTL mapping using 180 F2:9 recombinant inbred lines (RILs) derived from a cross between the resistant variety, Zenith, and the susceptible variety, Ilpum. A primary QTL study using the genotypes and phenotypes of the RILs indicated that the locus qBK1z conferring bakanae disease resistance from the Zenith was located in a 2.8 Mb region bordered by the two RM (Rice Microsatellite) markers, RM1331 and RM3530 on chromosome 1. The log of odds (LOD) score of qBK1z was 13.43, accounting for 30.9% of the total phenotypic variation. A finer localization of qBK1z was delimited at an approximate 730 kb interval in the physical map between Chr01_1435908 (1.43 Mbp) and RM10116 (2.16 Mbp). Introducing qBK1z or pyramiding with other previously identified QTLs could provide effective genetic control of bakanae disease in rice.


Ubiquitin-Specific Protease 2 (OsUBP2) Negatively Regulates Cell Death and Disease Resistance in Rice.

  • Ruirui Jiang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Lesion mimic mutants (LMMs) are great materials for studying programmed cell death and immune mechanisms in plants. Various mechanisms are involved in the phenotypes of different LMMs, but few studies have explored the mechanisms linking deubiquitination and LMMs in rice (Oryza sativa). Here, we identified a rice LMM, rust spots rice (rsr1), resulting from the mutation of a single recessive gene. This LMM has spontaneous reddish-brown spots on its leaves, and displays enhanced resistance to both fungal leaf blast (caused by Magnaporthe oryzae) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). Map-based cloning showed that the mutated gene in rsr1 encodes a Ubiquitin-Specific Protease 2 (OsUBP2). The mutation of OsUBP2 was shown to result in reactive oxygen species (ROS) accumulation, chloroplast structural defects, and programmed cell death, while the overexpression of OsUBP2 weakened rice resistance to leaf blast. OsUBP2 is therefore a negative regulator of immune processes and ROS production. OsUBP2 has deubiquitinating enzyme activity in vitro, and the enzyme active site includes a cysteine at the 234th residue. The ubiquitinated proteomics data of rsr1 and WT provide some possible target protein candidates for OsUBP2.


Application of Grafting Method in Resistance Identification of Sweet Potato Virus Disease and Resistance Evaluation of Elite Sweet Potato [Ipomoea batatas (L.) Lam] Varieties.

  • Hong Huang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties.


Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean.

  • Alfonso Gonzalo De la Rubia‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA priming can be explained, at least partially, by a drastic CW remodeling.


A Meta-Analysis of Quantitative Trait Loci Associated with Multiple Disease Resistance in Rice (Oryza sativa L.).

  • Ilakiya Sharanee Kumar‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Rice blast, sheath blight and bacterial leaf blight are major rice diseases found worldwide. The development of resistant cultivars is generally perceived as the most effective way to combat these diseases. Plant disease resistance is a polygenic trait where a combinatorial effect of major and minor genes affects this trait. To locate the source of this trait, various quantitative trait loci (QTL) mapping studies have been performed in the past two decades. However, investigating the congruency between the reported QTL is a daunting task due to the heterogeneity amongst the QTLs studied. Hence, the aim of our study is to integrate the reported QTLs for resistance against rice blast, sheath blight and bacterial leaf blight and objectively analyze and consolidate the location of QTL clusters in the chromosomes, reducing the QTL intervals and thus identifying candidate genes within the selected meta-QTL. A total of twenty-seven studies for resistance QTLs to rice blast (8), sheath blight (15) and bacterial leaf blight (4) was compiled for QTL projection and analyses. Cumulatively, 333 QTLs associated with rice blast (114), sheath blight (151) and bacterial leaf blight (68) resistance were compiled, where 303 QTLs could be projected onto a consensus map saturated with 7633 loci. Meta-QTL analysis on 294 QTLs yielded 48 meta-QTLs, where QTLs with membership probability lower than 60% were excluded, reducing the number of QTLs within the meta-QTL to 274. Further, three meta-QTL regions (MQTL2.5, MQTL8.1 and MQTL9.1) were selected for functional analysis on the basis that MQTL2.5 harbors the highest number of QTLs; meanwhile, MQTL8.1 and MQTL9.1 have QTLs associated with all three diseases mentioned above. The functional analysis allows for determination of enriched gene ontology and resistance gene analogs (RGAs) and other defense-related genes. To summarize, MQTL2.5, MQTL8.1 and MQTL9.1 have a considerable number of R-genes that account for 10.21%, 4.08% and 6.42% of the total genes found in these meta-QTLs, respectively. Defense genes constitute around 3.70%, 8.16% and 6.42% of the total number of genes in MQTL2.5, MQTL8.1 and MQTL9.1, respectively. This frequency is higher than the total frequency of defense genes in the rice genome, which is 0.0096% (167 defense genes/17,272 total genes). The integration of the QTLs facilitates the identification of QTL hotspots for rice blast, sheath blight and bacterial blight resistance with reduced intervals, which helps to reduce linkage drag in breeding. The candidate genes within the promising regions could be utilized for improvement through genetical engineering.


Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber.

  • Yidan Wang‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Cucumbers (Cucumis sativus L.) are a global popular vegetable and are widely planted worldwide. However, cucumbers are susceptible to various infectious diseases such as Fusarium and Verticillium wilt, downy and powdery mildew, and bacterial soft rot, which results in substantial economic losses. Grafting is an effective approach widely used to control these diseases. The present study investigated the role of wax and the phenylpropanoid biosynthesis pathway in black-seed pumpkin rootstock-grafted cucumbers. Our results showed that grafted cucumbers had a significantly higher cuticular wax contents on the fruit surface than that of self-rooted cucumbers at all stages observed. A total of 1132 differently expressed genes (DEGs) were detected in grafted cucumbers compared with self-rooted cucumbers. Pathway enrichment analysis revealed that phenylpropanoid biosynthesis, phenylalanine metabolism, plant circadian rhythm, zeatin biosynthesis, and diterpenoid biosynthesis were significantly enriched. In this study, 1 and 13 genes involved in wax biosynthesis and the phenylpropanoid biosynthesis pathway, respectively, were up-regulated in grafted cucumbers. Our data indicated that the up-regulated genes in the wax and phenylpropanoid biosynthesis pathways may contribute to disease resistance in rootstock-grafted cucumbers, which provides promising targets for enhancing disease resistance in cucumbers by genetic manipulation.


Heterologous Expression of the Constitutive Disease Resistance 2 and 8 Genes from Poncirus trifoliata Restored the Hypersensitive Response and Resistance of Arabidopsis cdr1 Mutant to Bacterial Pathogen Pseudomonas syringae.

  • Xiaobao Ying‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. In the United States, this disease is associated with a phloem-restricted bacterium, Candidatus Liberibacter asiaticus. Commercial citrus cultivars are susceptible to HLB, but Poncirus trifoliata, a close relative of Citrus, is highly tolerant of HLB. Isolating P. trifoliata gene(s) controlling its HLB tolerance followed by expressing the gene(s) in citrus is considered a potential cisgenic approach to engineering citrus for tolerance to HLB. Previous gene expression studies indicated that the constitutive disease resistance (CDR) genes in P. trifoliata (PtCDRs) may play a vital role in its HLB tolerance. This study was designed to use Arabidopsis mutants as a model system to confirm the function of PtCDRs in plant disease resistance. PtCDR2 and PtCDR8 were amplified from P. trifoliata cDNA and transferred into the Arabidopsis cdr1 mutant, whose resident CDR1 gene was disrupted by T-DNA insertion. The PtCDR2 and PtCDR8 transgenic Arabidopsis cdr1 mutant restored its hypersensitive response to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2. The defense marker gene PATHOGENESIS RELATED 1 (PR1) expressed at much higher levels in the PtCDR2 or PtCDR8 transgenic cdr1 mutant than in the non-transgenic cdr1 mutant with or without pathogen infection. Multiplication of Pst DC3000 bacteria in Arabidopsis was inhibited by the expression of PtCDR2 and PtCDR8. Our results showed that PtCDR2 and PtCDR8 were functional in Arabidopsis and played a positive role in disease resistance and demonstrated that Arabidopsis mutants can be a useful alternate system for screening Poncirus genes before making the time-consuming effort to transfer them into citrus, a perennial woody plant that is highly recalcitrant for Agrobacterium or biolistic-mediated transformation.


Transcription Factor Pso9TF Assists Xinjiang Wild Myrobalan Plum (Prunus sogdiana) PsoRPM3 Disease Resistance Protein to Resist Meloidogyne incognita.

  • Haifeng Zhu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The root-knot nematode (Meloidogyne incognita) causes huge economic losses in the agricultural industry throughout the world. Control methods against these polyphagous plant endoparasites are sparse, the preferred one being the deployment of plant cultivars or rootstocks bearing resistance genes against Meloidogyne species. Our previous study has cloned one resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana). However, the function of PsoRPM3 remains elusive. In the present study, we have investigated the regulatory mechanism of PsoRPM3 in plant defense responses to M. incognita. Our results indicate that fewer giant cells were detected in the roots of the PsoRPM3 transgenic tobacco than wild tobacco lines after incubation with M. incognita. Transient transformations of full-length and TN structural domains of PsoRPM3 have induced significant hypersensitive responses (HR), suggesting that TIR domain might be the one which caused HR. Further, yeast two-hybrid results revealed that the full-length and LRR domain of PsoRPM3 could interact with the transcription factor Pso9TF. The addition of Pso9TF increased the ROS levels and induced HR. Thus, our data revealed that the LRR structural domain of PsoRPM3 may be associated with signal transduction. Moreover, we did not find any relative inductions of defense-related genes PsoEDS1, PsoPAD4 and PsoSAG101 in P. sogdiana, which has been incubated with M. incognita. In summary, our work has shown the key functional domain of PsoRPM3 in the regulation of defense responses to M. incognita in P. sogdiana.


Enhanced Resistance to Leaf Fall Disease Caused by Phytophthora palmivora in Rubber Tree Seedling by Sargassum polycystum Extract.

  • Khemmikar Khompatara‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

The brown seaweed (Sargassum polycystum C. Agardh-Sargassaceae) extract was examined for its bioelicitor properties in the rubber tree seedling (Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg. - Euphorbiaceae) and its application to reduce the leaf fall disease caused by Phytophthora palmivora (Edwin John) Butler, 1917 (Peronosporaceae). The major purpose of this study was to apply this seaweed extract (SWE) to improve the disease resistance in rubber tree seedling compared to a chemical fungicide (1% metalaxyl). After foliar spraying of SWE solution, two antioxidant enzymes, catalase (CAT) and peroxidase (POD) and systemic acquired resistance (SAR)-triggered enzyme, β-1,3-glucanase (GLU), were analyzed. Both secondary metabolites, a phytoalexin scopoletin (Scp) and a signaling molecule salicylic acid (SA) were measured by high performance liquid chromatography (HPLC). Both SWE- and metalaxyl-treated plants had a close disease index (DI)-score which were 16.90 ± 1.93 and 15.54 ± 1.25, respectively, while the positive control sprayed with P. palmivora showed DI-score of 29.27 ± 1.89 which was much higher than those treated with SWE or fungicide. CAT, POD, and GLU were increased in rubber tree leaves treated with SWE solution. Furthermore, Scp and SA were significantly increased in SWE-treated leaves. Enhanced systemic acquired resistance induction, 2.09 folds of SA accumulation, was observed in the distal area comparing to the local area of SWE application. In conclusion, the positive effects of SWE elicitation from these studies revealed that SWE could be used as an alternative biocontrol agent for foliar spraying to enhance the defense responses in rubber tree seedling against P. palmivora.


Evaluation and Selection of Interspecific Lines of Groundnut (Arachis hypogaea L.) for Resistance to Leaf Spot Disease and for Yield Improvement.

  • Nicholas N Denwar‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Early and late leaf spot are two devastating diseases of peanut (Arachis hypogaea L.) worldwide. The development of a fertile, cross-compatible synthetic amphidiploid, TxAG-6 ([A. batizocoi × (A. cardenasii × A. diogoi)]4x), opened novel opportunities for the introgression of wild alleles for disease and pest resistance into commercial cultivars. Twenty-seven interspecific lines selected from prior evaluation of an advanced backcross population were evaluated for resistance to early and late leaf spot, and for yield in two locations in Ghana in 2006 and 2007. Several interspecific lines had early leaf spot scores significantly lower than the susceptible parent, indicating that resistance to leaf spot had been successfully introgressed and retained after three cycles of backcrossing. Time to appearance of early leaf spot symptoms was less in the introgression lines than in susceptible check cultivars, but the opposite was true for late leaf spot. Selected lines from families 43-08, 43-09, 50-04, and 60-02 had significantly reduced leaf spot scores, while lines from families 43-09, 44-10, and 63-06 had high pod yields. One line combined both resistance to leaf spot and high pod yield, and several other useful lines were also identified. Results suggest that it is possible to break linkage drag for low yield that accompanies resistance. However, results also suggest that resistance was diluted in many of the breeding lines, likely a result of the multigenic nature of resistance. Future QTL analysis may be useful to identify alleles for resistance and allow recombination and pyramiding of resistance alleles while reducing linkage drag.


HWA1- and HWA2-Mediated Hybrid Weakness in Rice Involves Cell Death, Reactive Oxygen Species Accumulation, and Disease Resistance-Related Gene Upregulation.

  • Kumpei Shiragaki‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

Hybrid weakness is a type of reproductive isolation in which F1 hybrids of normal parents exhibit weaker growth characteristics than their parents. F1 hybrid of the Oryza sativa Indian cultivars 'P.T.B.7' and 'A.D.T.14' exhibits hybrid weakness that is associated with the HWA1 and HWA2 loci. Accordingly, the aim of the present study was to analyze the hybrid weakness phenotype of the 'P.T.B.7' × 'A.D.T.14' hybrids. The height and tiller number of the F1 hybrid were lower than those of either parent, and F1 hybrid also exhibited leaf yellowing that was not observed in either parent. In addition, the present study demonstrates that SPAD values, an index correlated with chlorophyll content, are effective for evaluating the progression of hybrid weakness that is associated with the HWA1 and HWA2 loci because it accurately reflects degree of leaf yellowing. Both cell death and H2O2, a reactive oxygen species, were detected in the yellowing leaves of the F1 hybrid. Furthermore, disease resistance-related genes were upregulated in the yellowing leaves of the F1 hybrids, whereas photosynthesis-related genes tended to be downregulated. These results suggest that the hybrid weakness associated with the HWA1 and HWA2 loci involves hypersensitive response-like mechanisms.


Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato.

  • Yuanyuan Liu‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.


Occurrence of Sweetpotato (Ipomoea batatas) Wilt and Surface Rot Disease and Determining Resistance of Selected Varieties to the Pathogen in Korea.

  • Narayan Chandra Paul‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Fusarium wilt and Fusarium surface rot caused by Fusarium oxysporum Schltdl are the major diseases of sweetpotato (Ipomoea batatas) and was surveyed in different locations (Cheongju, Heanam, Iksan, Icheon, Kimje, Nonsan, Yeoungam, and Yeoju) in Korea from 2015 to 2017 in the field, after harvesting and in storehouse. The wilt incidence in the early stage represented 17.9%, 5.9%, and 8.3% in 2015, 2016, and 2017, respectively. Samples were collected, and the causal organism was isolated on potato dextrose agar (PDA). Ten pure cultures were stored at the Sweetpotato Research Laboratory, Bioenergy Crop Research Institute, Muan, Korea. Morphological analysis, along with molecular phylogeny of the sequences of internal-transcribed spacer (ITS) and elongation factor 1-α (EF-1α) genes and their combined phylogenetic analysis, confirmed the isolates as the Fusarium oxysporum Schltdl. Pathogenicity tests were conducted on sweetpotato stems, and storage roots by artificially inoculation methods, and the most virulent isolate was selected as SPL18019. A rapid screening method on 21 selected varieties for resistant variety selection was applied on stems. The Pungwanmi was found resistant to Fusarium wilt, whereas Annobeni was the most susceptible. On the other hand, six varieties were used to test surface rot resistance, and Yulmi and Yesumi were resistant and susceptible, respectively, to Fusarium surface rot.


Sources of Resistance to Common Bacterial Blight and Charcoal Rot Disease for the Production of Mesoamerican Common Beans in the Southern United States.

  • Daniel Ambachew‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The gene pool of Mesoamerican common beans (Phaseolus vulgaris L.) includes genotypes in the small-to-medium-size seeded dry beans, as well as some snap beans from hotter environments adapted to the Southeastern United States. However, the warm and humid climate of the Southeastern United States is conducive to diseases such as Common Bacterial Blight (CBB) and Charcoal Rot (CR). The pathogens for these two diseases can survive long periods in infested soil or on seeds and are difficult to control through pesticides. Hence, field-level resistance would be the best management strategy for these diseases. The goals of this study were (1) to evaluate field-level resistance from the various commercial classes and subgroups represented in the Mesoamerican gene pool as sources for breeding beans for the region and (2) to evaluate genome-wide marker × trait associations (GWAS) using genetic markers for the genotypes. A total of 300 genotypes from the Mesoamerican Diversity Panel (MDP) were evaluated for CBB and CR in field experiments for three years. CBB resistance was also tested with a field isolate in controlled greenhouse conditions. The analysis of variance revealed the presence of variability in the MDP for the evaluated traits. We also identified adapted common bean genotypes that could be used directly in Southeastern production or that could be good parents in breeding programs for CBB and CR resistance. The GWAS detected 14 significant Single-Nucleotide Polymorphism (SNP) markers associated with CBB resistance distributed on five chromosomes, namely Pv02, Pv04, Pv08, Pv10, and Pv11, but no loci for resistance to CR. A total of 89 candidate genes were identified in close vicinity (±100 kb) to the significant CBB markers, some of which could be directly or indirectly involved in plant defense to diseases. These results provide a basis to further understand the complex inheritance of CBB resistance in Mesoamerican common beans and show that this biotic stress is unrelated to CR resistance, which was evident during a drought period. Genotypes with good yield potential for the Southeastern U.S. growing conditions were found with resistant to infection by the two diseases, as well as adaptation to the hot and humid conditions punctuated by droughts found in this region.


Efficacy of Seed-Biopriming with Trichoderma spp. and Foliar Spraying of ZnO-Nanoparticles Induce Cherry Tomato Growth and Resistance to Fusarium Wilt Disease.

  • Amany H M Shams‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Several microbes that cause plant diseases drastically lower the production of agriculture and jeopardize the safety of the world's food supply. As a result, sustainable agriculture requires disease management tactics based on modern, eco-friendly techniques as alternatives to various agrochemicals. The current study aimed to assess the antifungal activity of ZnO-nanoparticles against Fusarium solani in-vitro, and the ability of two antagonistic Trichoderma isolates, Trichoderma viride and Trichoderma harzianum, to produce antifungal secondary metabolites and identify them using gas chromatography-mass spectrometry, and to evaluate the combined effects of foliar spray of ZnO-nanoparticles and bioprimed seeds of cherry tomato (Solanum lycopersicum L.) with two antagonistic Trichoderma isolates against Fusarium wilt disease caused by Fusarium solani in greenhouse conditions. The results revealed that, in-vitro, the highest concentration of ZnO nanoparticles (3000 ppm) resulted in the greatest decrease in Fusarium solani mycelial growth (90.91% inhibition). The scanning electron microscopy demonstrated the evident distortion in Fusarium solani growing mycelia treated with ZnO-nanoparticles, which might be the source of growth suppression. Additionally, twenty-eight bioactive chemical compounds were isolated and identified from Trichoderma spp. ethyl acetate crude extracts using gas chromatography-mass spectrometry. In a greenhouse experiment, the combination of bioprimed cherry tomato plants with Trichoderma harzianum and foliar spraying of ZnO-nanoparticles at 3000 ppm was the most effective interaction treatment for reducing disease severity index (23.4%) and improving the vegetative growth parameters, micronutrient contents (Mn, Zn, and Fe in leaves), and chlorophyll content (SPAD unit), as well as stimulating phenylalanine ammonia-lyase activity of cherry tomato leaves at 75 days after sowing. In conclusion, the antifungal potential of seed-biopriming with antagonistic Trichoderma isolates and the foliar spraying of ZnO-nanoparticles can boost cherry tomato growth and confer resistance to Fusarium wilt caused by Fusarium solani.


Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses.

  • John Christian Ontoy‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Bacterial panicle blight (BPB) and sheath blight (SB) are major diseases of rice and few cultivars have shown a high level of resistance to these diseases. A recombinant inbred line (RIL) population developed from the U.S. cultivars Jupiter (moderately resistant) and Trenasse (susceptible) was investigated to identify loci associated with the partial disease resistance to BPB and SB. Disease phenotypes in BPB and SB, as well as the days-to-heading (DTH) trait, were evaluated in the field. DTH was correlated to BPB and SB diseases, while BPB was positively correlated to SB in the field trials with this RIL population. Genotyping was performed using Kompetitive Allele Specific PCR (KASP) assays and whole-genome sequence (WGS) analyses. Quantitative trait locus (QTL) mapping and bulk segregant analysis using a set of WGS data (QTL-seq) detected a major QTL on the upper arm of chromosome 3 for BPB, SB, and DTH traits within the 1.0-1.9 Mb position. Additional QTLs associated with BPB and SB were also identified from other chromosomes by the QTL-seq analysis. The QTLs identified in this study contain at least nine candidate genes that are predicted to have biological functions in defense or flowering. These findings provide an insight into the complex nature of the quantitative resistance to BPB and SB, which may also be closely linked to the flowering trait.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: