Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Hybrid Silica-Coated PLGA Nanoparticles for Enhanced Enzyme-Based Therapeutics.

  • Kyle T Gustafson‎ et al.
  • Pharmaceutics‎
  • 2022‎

Some cancer cells rely heavily on non-essential biomolecules for survival, growth, and proliferation. Enzyme based therapeutics can eliminate these biomolecules, thus specifically targeting neoplastic cells; however, enzyme therapeutics are susceptible to immune clearance, exhibit short half-lives, and require frequent administration. Encapsulation of therapeutic cargo within biocompatible and biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) is a strategy for controlled release. Unfortunately, PLGA NPs exhibit burst release of cargo shortly after delivery or upon introduction to aqueous environments where they decompose via hydrolysis. Here, we show the generation of hybrid silica-coated PLGA (SiLGA) NPs as viable drug delivery vehicles exhibiting sub-200 nm diameters, a metastable Zeta potential, and high loading efficiency and content. Compared to uncoated PLGA NPs, SiLGA NPs offer greater retention of enzymatic activity and slow the burst release of cargo. Thus, SiLGA encapsulation of therapeutic enzymes, such as asparaginase, could reduce frequency of administration, increase half-life, and improve efficacy for patients with a range of diseases.


Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study.

  • Hana Charvátová‎ et al.
  • Pharmaceutics‎
  • 2023‎

Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.


New Protein-Coated Silver Nanoparticles: Characterization, Antitumor and Amoebicidal Activity, Antiproliferative Selectivity, Genotoxicity, and Biocompatibility Evaluation.

  • Lucía Margarita Valenzuela-Salas‎ et al.
  • Pharmaceutics‎
  • 2021‎

Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity. The protein-coated AgNPs formulation exhibits a half-inhibitory concentration (IC50) = 19.7 µM (2.3 µg/mL) that is almost 10 times more potent than carboplatin (first-line chemotherapeutic agent) to inhibit the proliferation of the highly aggressive human adenocarcinoma HCT-15. The main death pathway elicited by AgNPs on HCT-15 is apoptosis, which is probably stimulated by reactive oxygen species (ROS) overproduction on mitochondria. A concentration of 111 µM (600 µg/mL) of metallic silver contained in AgNPs produces neither cytotoxic nor genotoxic damage on human peripheral blood lymphocytes. Thus, the AgNPs formulation evaluated in this work improves both the antiproliferative potency on HCT-15 cultures and cytotoxic selectivity ten times more than carboplatin. A similar mechanism is suggested for the antiproliferative activity observed on HM1-IMSS trophozoites (IC50 = 69.2 µM; 7.4 µg/mL). There is no change in cell viability on mice primary cultures of brain, liver, spleen, and kidney exposed to an AgNPs concentration range from 5.5 µM to 5.5 mM (0.6 to 600 µg/mL). The lethal dose was determined following the OECD guideline 420 for Acute Oral Toxicity Assay, obtaining an LD50 = 2618 mg of Ag/Kg body weight. All mice survived the observational period; the histopathology and biochemical analysis show no differences compared with the negative control group. In summary, all results from toxicological evaluation suggest a Category 5 (practically nontoxic) of the Globally Harmonized System of Classification and Labelling of Chemicals for that protein-coated AgNPs after oral administration for a short period and urge the completion of its preclinical toxicological profile. These findings open new opportunities in the development of selective, safe, and effective AgNPs formulations for the treatment of cancer and parasitic diseases with a significant reduction of side effects.


Topical Application of Hyaluronic Acid-RGD Peptide-Coated Gelatin/Epigallocatechin-3 Gallate (EGCG) Nanoparticles Inhibits Corneal Neovascularization Via Inhibition of VEGF Production.

  • Takuya Miyagawa‎ et al.
  • Pharmaceutics‎
  • 2020‎

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


Doxorubicin-Loaded Core-Shell UiO-66@SiO2 Metal-Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment.

  • Daria B Trushina‎ et al.
  • Pharmaceutics‎
  • 2022‎

Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core-shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core-shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite's application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.


A Recombinant Fusion Construct between Human Serum Albumin and NTPDase CD39 Allows Anti-Inflammatory and Anti-Thrombotic Coating of Medical Devices.

  • Meike-Kristin Abraham‎ et al.
  • Pharmaceutics‎
  • 2021‎

Medical devices directly exposed to blood are commonly used to treat cardiovascular diseases. However, these devices are associated with inflammatory reactions leading to delayed healing, rejection of foreign material or device-associated thrombus formation. We developed a novel recombinant fusion protein as a new biocompatible coating strategy for medical devices with direct blood contact. We genetically fused human serum albumin (HSA) with ectonucleoside triphosphate diphosphohydrolase-1 (CD39), a promising anti-thrombotic and anti-inflammatory drug candidate. The HSA-CD39 fusion protein is highly functional in degrading ATP and ADP, major pro-inflammatory reagents and platelet agonists. Their enzymatic properties result in the generation of AMP, which is further degraded by CD73 to adenosine, an anti-inflammatory and anti-platelet reagent. HSA-CD39 is functional after lyophilisation, coating and storage of coated materials for up to 8 weeks. HSA-CD39 coating shows promising and stable functionality even after sterilisation and does not hinder endothelialisation of primary human endothelial cells. It shows a high level of haemocompatibility and diminished blood cell adhesion when coated on nitinol stents or polyvinylchloride tubes. In conclusion, we developed a new recombinant fusion protein combining HSA and CD39, and demonstrated that it has potential to reduce thrombotic and inflammatory complications often associated with medical devices directly exposed to blood.


Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications.

  • Juan Domínguez-Robles‎ et al.
  • Pharmaceutics‎
  • 2019‎

Lignin (LIG) is a natural biopolymer with well-known antioxidant capabilities. Accordingly, in the present work, a method to combine LIG with poly(lactic acid) (PLA) for fused filament fabrication applications (FFF) is proposed. For this purpose, PLA pellets were successfully coated with LIG powder and a biocompatible oil (castor oil). The resulting pellets were placed into an extruder at 200 °C. The resulting PLA filaments contained LIG loadings ranging from 0% to 3% (w/w). The obtained filaments were successfully used for FFF applications. The LIG content affected the mechanical and surface properties of the overall material. The inclusion of LIG yielded materials with lower resistance to fracture and higher wettabilities. Moreover, the resulting 3D printed materials showed antioxidant capabilities. By using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, the materials were capable of reducing the concentration of this compound up to ca. 80% in 5 h. This radical scavenging activity could be potentially beneficial for healthcare applications, especially for wound care. Accordingly, PLA/LIG were used to design meshes with different designs for wound dressing purposes. A wound healing model compound, curcumin (CUR), was applied in the surface of the mesh and its diffusion was studied. It was observed that the dimensions of the meshes affected the permeation rate of CUR. Accordingly, the design of the mesh could be modified according to the patient's needs.


Osseointegration Improvement of Co-Cr-Mo Alloy Produced by Additive Manufacturing.

  • Amilton Iatecola‎ et al.
  • Pharmaceutics‎
  • 2021‎

Cobalt-base alloys (Co-Cr-Mo) are widely employed in dentistry and orthopedic implants due to their biocompatibility, high mechanical strength and wear resistance. The osseointegration of implants can be improved by surface modification techniques. However, complex geometries obtained by additive manufacturing (AM) limits the efficiency of mechanical-based surface modification techniques. Therefore, plasma immersion ion implantation (PIII) is the best alternative, creating nanotopography even in complex structures. In the present study, we report the osseointegration results in three conditions of the additively manufactured Co-Cr-Mo alloy: (i) as-built, (ii) after PIII, and (iii) coated with titanium (Ti) followed by PIII. The metallic samples were designed with a solid half and a porous half to observe the bone ingrowth in different surfaces. Our results revealed that all conditions presented cortical bone formation. The titanium-coated sample exhibited the best biomechanical results, which was attributed to the higher bone ingrowth percentage with almost all medullary canals filled with neoformed bone and the pores of the implant filled and surrounded by bone ingrowth. It was concluded that the metal alloys produced for AM are biocompatible and stimulate bone neoformation, especially when the Co-28Cr-6Mo alloy with a Ti-coated surface, nanostructured and anodized by PIII is used, whose technology has been shown to increase the osseointegration capacity of this implant.


Biomimetic Silica Particles with Self-Loading BMP-2 Knuckle Epitope Peptide and Its Delivery for Bone Regeneration.

  • Mi-Ran Ki‎ et al.
  • Pharmaceutics‎
  • 2023‎

Biomimetic silica deposition is an in-situ immobilization method for bioactive molecules under biocompatible conditions. The osteoinductive P4 peptide derived from the knuckle epitope of bone morphogenetic protein (BMP), which binds to BMP receptor-II (BMPRII), has been newly found to contain silica formation ability. We found that the two lysine residues at the N-terminus of P4 played a vital role in silica deposition. The P4 peptide co-precipitated with silica during P4-mediated silicification, yielding P4/silica hybrid particles (P4@Si) with a high loading efficiency of 87%. P4 was released from P4@Si at a constant rate for over 250 h, representing a zero-order kinetic model. In flow cytometric analysis, P4@Si showed a 1.5-fold increase in the delivery capacity to MC3T3 E1 cells than the free form of P4. Furthermore, P4 was found anchored to hydroxyapatite (HA) through a hexa-glutamate tag, followed by P4-mediated silicification, yielding P4@Si coated HA. This suggested a superior osteoinductive potential compared to silica or P4 alone coated HA in the in vitro study. In conclusion, the co-delivery of the osteoinductive P4 peptide and silica by P4-mediated silica deposition is an efficient method for capturing and delivering its molecules and inducing synergistic osteogenesis.


Fabrication of Functional bioMOF-100 Prototype as Drug Delivery System for Breast Cancer Therapy.

  • Renata Carolina Alves‎ et al.
  • Pharmaceutics‎
  • 2022‎

Breast cancer is the most frequent cause of cancer death in women, representing the fifth leading cause of cancer death overall. Therefore, the growing search for the development of new treatments for breast cancer has been developed lately as well as drug delivery systems such as biocompatible metal-organic Frameworks (bio-MOFs). These may be promising and attractive for drug incorporation and release. The present study aims to develop a drug carrier system RCA (bioMOF-100 submitted to the activation process) containing incorporated curcumin (CCM), whose material surface is coated with folic acid molecules (FA) to promote the targeting of drug carrier systems to the tumor region. They were synthesized and characterized using several characterization techniques. The materials were submitted to drug encapsulation tests, whose encapsulation efficiency was 32.80% for CCM@RCA-1D. Using the 1H nuclear magnetic resonance (NMR) spectroscopy technique, it was possible to verify the appearance of signals referring to folic acid, suggesting success in the functionalization of these matrices. In vitro tests such as cell viability and type of cell death were evaluated in both series of compounds (CCM@RCA-1D, CCM@RCA-1D/FA) in breast tumor lines. The results revealed low toxicity of the materials and cell death by late apoptosis. Thus, these results indicate that the matrices studied can be promising carriers in the treatment of breast cancer.


Coating of SPIONs with a Cysteine-Decorated Copolyester: A Possible Novel Nanoplatform for Enzymatic Release.

  • Jeovandro Maria Beltrame‎ et al.
  • Pharmaceutics‎
  • 2023‎

Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle's surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.


Surface Coating with Hyaluronic Acid-Gelatin-Crosslinked Hydrogel on Gelatin-Conjugated Poly(dimethylsiloxane) for Implantable Medical Device-Induced Fibrosis.

  • Haejin Joo‎ et al.
  • Pharmaceutics‎
  • 2021‎

Polydimethylsiloxane (PDMS) is a biocompatible polymer that has been applied in many fields. However, the surface hydrophobicity of PDMS can limit successful implementation, and this must be reduced by surface modification to improve biocompatibility. In this study, we modified the PDMS surface with a hydrogel and investigated the effect of this on hydrophilicity, bacterial adhesion, cell viability, immune response, and biocompatibility of PDMS. Hydrogels were created from hyaluronic acid and gelatin using a Schiff-base reaction. The PDMS surface and hydrogel were characterized using nuclear magnetic resonance, X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and scanning electron microscopy. The hydrophilicity of the surface was confirmed via a decrease in the water contact angle. Bacterial anti-adhesion was demonstrated for Pseudomonas aeruginosa, Ralstonia pickettii, and Staphylococcus epidermidis, and viability and improved distribution of human-derived adipose stem cells were also confirmed. Decreased capsular tissue responses were observed in vivo with looser collagen distribution and reduced cytokine expression on the hydrogel-coated surface. Hydrogel coating on treated PDMS is a promising method to improve the surface hydrophilicity and biocompatibility for surface modification of biomedical applications.


Superparamagnetic Iron Oxide Nanoparticles and Curcumin Equally Promote Neuronal Branching Morphogenesis in the Absence of Nerve Growth Factor in PC12 Cells.

  • Mahshid Zarei‎ et al.
  • Pharmaceutics‎
  • 2022‎

Regeneration of the damaged neurons in neurological disorders and returning their activities are two of the main purposes of neuromedicine. Combination use of specific nanoformulations with a therapeutic compound could be a good candidate for neuroregeneration applications. Accordingly, this research aims to utilize the combination of curcumin, as a neurogenesis agent, with dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate their effects on PC12 cellsʹ neuronal branching morphogenesis in the absence of nerve growth factor. Therefore, the effects of each component alone and in combination form on the cytotoxicity, neurogenesis, and neural branching morphogenesis were evaluated using MTT assay, immunofluorescence staining, and inverted microscopy, respectively. Results confirmed the effectiveness of the biocompatible iron oxide nanoparticles (with a size of about 100 nm) in improving the percentage of neural branching (p < 0.01) in PC12 cells. In addition, the combination use of these nanoparticles with curcumin could enhance the effect of curcumin on neurogenesis (p < 0.01). These results suggest that SPIONs in combination with curcumin could act as an inducing factor on PC12 neurogenesis in the absence of nerve growth factor and could offer a novel therapeutic approach to the treatment of neurodegenerative diseases.


Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings.

  • Klaudia Szafran‎ et al.
  • Pharmaceutics‎
  • 2022‎

Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir-Blodgett (LB) technique, on activated by air low temperature plasma PET plates (PETair). Their topography and surface chemistry were determined with the help of atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), respectively, while wettability was evaluated by the contact angle measurements. Then, the surface free energy and its components were calculated from the Lifshitz-van der Waals/Acid-Base (LWAB) approach. The AFM imaging showed that the Langmuir monolayers were transferred effectively and yielded smoothing of the PETair surface. Mass spectrometry confirmed compatibility of the quantitative and qualitative compositions of the monolayers before and after the transfer onto the substrate. Moreover, the molecular arrangement in the LB films and possible mechanisms of DOPC-CsA-LG interactions were determined. The wettability studies provided information on the type and magnitude of the interactions that can occur between the biocoatings and the liquids imitating different environments. It was found that the changes from open to closed conformation of CsA molecules are driven by the hydrophobic environment ensured by the surrounding DOPC and LG molecules. This process is of significance to drug delivery where the CsA molecules can be released directly from the biomaterial surface by passive diffusion. The obtained results showed that the chosen techniques are complementary for the characterization of the molecular organization of multicomponent LB films at the polymer substrate as well as for designing biocompatible coatings with precisely defined wettability.


Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous.

  • Seher Yaylaci‎ et al.
  • Pharmaceutics‎
  • 2023‎

Ranibizumab is a recombinant VEGF-A antibody used to treat the wet form of age-related macular degeneration. It is intravitreally administered to ocular compartments, and the treatment requires frequent injections, which may cause complications and patient discomfort. To reduce the number of injections, alternative treatment strategies based on relatively non-invasive ranibizumab delivery are desired for more effective and sustained release in the eye vitreous than the current clinical practice. Here, we present self-assembled hydrogels composed of peptide amphiphile molecules for the sustained release of ranibizumab, enabling local high-dose treatment. Peptide amphiphile molecules self-assemble into biodegradable supramolecular filaments in the presence of electrolytes without the need for a curing agent and enable ease of use due to their injectable nature-a feature provided by shear thinning properties. In this study, the release profile of ranibizumab was evaluated by using different peptide-based hydrogels at varying concentrations for improved treatment of the wet form of age-related macular degeneration. We observed that the slow release of ranibizumab from the hydrogel system follows extended- and sustainable release patterns without any dose dumping. Moreover, the released drug was biologically functional and effective in blocking the angiogenesis of human endothelial cells in a dose-dependent manner. In addition, an in vivo study shows that the drug released from the hydrogel nanofiber system can stay in the rabbit eye's posterior chamber for longer than a control group that received only a drug injection. The tunable physiochemical characteristics, injectable nature, and biodegradable and biocompatible features of the peptide-based hydrogel nanofiber show that this delivery system has promising potential for intravitreal anti-VEGF drug delivery in clinics to treat the wet form age-related macular degeneration.


Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses.

  • Walid M Abdelwahab‎ et al.
  • Pharmaceutics‎
  • 2024‎

Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.


A New Bevacizumab Carrier for Intravitreal Administration: Focus on Stability.

  • Daniela Chirio‎ et al.
  • Pharmaceutics‎
  • 2021‎

Bevacizumab (BVZ) is a monoclonal antibody that binds to human vascular endothelial growth factor A (VEGF-A) and inhibits the interaction between VEGF-A and VEGF receptors, thus blocking the angiogenesis. Repeated intravitreal injections of BVZ for the treatment of ocular pathologies that present an excessive proliferation results in a low patience compliance. BVZ is specially indicated for the treatment of diabetic and degenerative retinopathy. In the present study, we designed lipid nanoparticles (NPs) as a BVZ sustained drug delivery system for reducing the frequency of administration. We used a simple and highly efficient procedure, "Cold dilution of microemulsions", to obtain spherical NPs with mean diameters of 280-430 nm, Zeta potentials between -17 and -31 mV, and drug entrapment efficiencies between 50 to 90%. This study focused on the biochemical and biophysical stabilities of BVZ after entrapment in NPs. SDS-PAGE electrophoretic analysis and circular dichroism, dynamic light scattering, and scanning electron microscopy were used to characterize BVZ-loaded NPs. The biocompatibility was assessed by in vitro cell compatibility studies using the ARPE-19 cell line. Thus, in this work, a stable BVZ-loaded system was obtained. In addition, several studies have shown that BVZ is released slowly from the lipid matrix and that this system is biocompatible. The results are promising and the developed NPs could be exploited to create a new, potentially effective and minimally invasive treatment of intraocular diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: