Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients.

  • Sagus Sampath‎ et al.
  • Oncotarget‎
  • 2018‎

Immunomodulation contributes to the antitumor efficacy of the fractionated radiation therapy (RT). Here, we describe immune effects of RT with concurrent systemic cisplatin or cetuximab treatment of patients with stage III-IV head and neck squamous cell carcinoma (HNSCC). Using longitudinally collected blood samples, we identified significant changes in cytokines/chemokines and immune cell populations compared to immune-related gene expression profiles in peripheral blood mononuclear cells (PBMCs). The 7-week combinatorial RT resulted in gradual elevation of proinflammatory mediators (IFNγ, IL-6, TNFɑ, CCL2), while levels of IL-12, cytokine essential for antitumor immune responses, were decreased. These effects correlated with progressive accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) with detectable activity of STAT3 and PD-L1 expression, underscoring tolerogenic effects of MDSCs. Correspondingly, gene expression analysis of PBMCs harvested after two weeks of combinatorial RT, found upregulation of several immunosuppressive mediators. These included IL6, IL6R, STAT3 and PDL1, which could represent IL-6/STAT3-driven tolerogenic signaling, which inhibits T cell and NK activity. Overall, our results suggest that potential immunostimulatory effects of combinatorial RT in HNSCC patients are likely limited by tolerogenic STAT3 signaling and PD-L1 upregulation in myeloid immune cells. Further studies will clarify whether STAT3 targeting could augment RT efficacy and durability of antitumor responses.


Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

  • Monica Civallero‎ et al.
  • Oncotarget‎
  • 2017‎

JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.


Targeted expression of BikDD combined with metronomic doxorubicin induces synergistic antitumor effect through Bax activation in hepatocellular carcinoma.

  • Huei-Yue Dai‎ et al.
  • Oncotarget‎
  • 2015‎

Conventional chemotherapy is commonly used to treat advanced non-resectable hepatocellular carcinoma (HCC) but this treatment modality has not demonstrated convincing survival benefit in HCC patients. Our previous studies indicated that targeted expression of therapeutic BikDD driven by a liver cancer-specific α-fetoprotein promoter/enhancer (eAFP) in the VISA backbone (eAFP-VISA-BikDD) significantly and specifically kills HCC cells in multiple orthotopic animal models. To enhance its therapeutic efficacy, we combined eAFP-VISA-BikDD with chemotherapeutic agents and found that eAFP-VISA-BikDD plus doxorubicin (Dox) or 5-fluorouracil (5-FU) demonstrated synergistic cytotoxicity in HCC cells. Specifically, the combination of eAFP-VISA-BikDD plus Dox markedly induced apoptosis via increased Bax mitochondrial translocation and cytoplasmic cytochrome c release. Compared with either agent alone, a low dose of Dox combined with eAFP-VISA-BikDD induced better antitumor effect and prolonged longer survival of mice in two orthotopic liver cancer xenograft models. Our findings provide strong preclinical support for evaluating the combined therapy of eAFP-VISA-BikDD and Dox in a clinical setting as a treatment option for HCC.


Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model.

  • Ramaswamy Bhuvaneswari‎ et al.
  • Oncotarget‎
  • 2015‎

Oral squamous cell carcinoma (OSCC) represents 90% of all oral cancers and is characterized with poor prognosis and low survival rate. Epidermal growth factor receptor (EGFR) is highly expressed in oral cancer and is a target for cancer therapy and prevention. In this present work, we evaluate the efficacy of photodynamic therapy (PDT) in combination with an EGFR inhibitor, nimotuzumab in oral cancer cell lines and OSCC xenograft tumor model. PDT is a promising and minimally invasive treatment modality that involves the interaction of a photosensitizer, molecular oxygen and light to destroy tumors. We demonstrated that EGFR inhibitors nimotuzumab and cetuximab exhibits anti-angiogenic properties by inhibiting the migration and invasion of oral cancer cell lines and human endothelial cells. The EGFR inhibitors also significantly reduced tube formation of endothelial cells. Chlorin e6-PDT in combination with nimotuzumab and cetuximab reduced cell proliferation in different oral cancer and endothelial cells. Furthermore, our in vivo studies showed that the combination therapy of PDT and nimotuzumab synergistically delayed tumor growth when compared with control and PDT treated tumors. Downregulation of EGFR, Ki-67 and CD31 was observed in the tumors treated with combination therapy. Analysis of the liver and kidney function markers showed no treatment related toxicity. In conclusion, PDT outcome of oral cancer can be improved when combined with EGFR inhibitor nimotuzumab.


Systemic release of osteoprotegerin during oxaliplatin-containing induction chemotherapy and favorable systemic outcome of sequential radiotherapy in rectal cancer.

  • Sebastian Meltzer‎ et al.
  • Oncotarget‎
  • 2016‎

In colorectal cancer, immune effectors may be determinative for disease outcome. Following curatively intended combined-modality therapy in locally advanced rectal cancer metastatic disease still remains a dominant cause of failure. Here, we investigated whether circulating immune factors might correlate with outcome. An antibody array was applied to assay changes of approximately 500 proteins in serial serum samples collected from patients during oxaliplatin-containing induction chemotherapy and sequential chemoradiotherapy before final pelvic surgery. Array data was analyzed by the Significance Analysis of Microarrays software and indicated significant alterations in serum osteoprotegerin (TNFRSF11B) during the treatment course, which were confirmed by osteoprotegerin measures using a single-parameter immunoassay. Patients experiencing increase in circulating osteoprotegerin during the chemotherapy had significantly better 5-year progression-free survival than those without increase (78% versus 48%; P = 0.009 by log-rank test). Hence, systemic release of this soluble tumor necrosis factor decoy receptor following the induction phase of neoadjuvant therapy was associated with favorable long-term outcome in patients given curatively intended chemoradiotherapy and surgery but with metastatic disease as the main adverse event. This finding suggests that osteoprotegerin may mediate or reflect systemic anti-tumor immunity invoked by combined-modality therapy in locally advanced rectal cancer.


Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers.

  • Edwardine Labay‎ et al.
  • Oncotarget‎
  • 2016‎

Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.


Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells.

  • Wu Luo‎ et al.
  • Oncotarget‎
  • 2016‎

Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.


MEK/CDK4,6 co-targeting is effective in a subset of NRAS, BRAF and 'wild type' melanomas.

  • Christian Posch‎ et al.
  • Oncotarget‎
  • 2018‎

Targeted therapy has become a cornerstone for the treatment of melanoma patients. Targeting NRAS function is particularly challenging. To date, only single MEK inhibitor treatment was able to show minimal clinical efficacy. The discovery that co-targeting of MEK and CDK4,6 has antitumor activity created excitement for patients and clinicians; however, it is largely unknown if only NRAS mutant patients might benefit from MEK/CDK4,6 blockade. In this study we investigate response patterns of NRAS, BRAF mutant and 'wild type' melanoma cells in vitro and in vivo when challenged with inhibitors of MEK, CDK4,6 and the combination of both. Data revealed, that in vitro growth response patterns of cells treated with the MEK/CDK4,6 combination correspond to in vivo efficacy of MEK/CDK4,6 co-targeting in melanoma xenograft models. Strikingly, this was consistently observed in NRAS and BRAF mutant, as well as in 'wild type' melanoma cells. Additionally, cells displaying elevated p-Rb levels after single MEK inhibition, showed more effective growth reduction with MEK/CDK4,6 co-targeting compared to single MEK inhibitor treatment in vivo. Findings indicate that combined MEK/CDK4,6 inhibition could offer an effectively therapeutic modality in a subset of BRAF and NRAS mutant, as well as 'wild type' melanoma patients.


Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling.

  • Yosuke Harazono‎ et al.
  • Oncotarget‎
  • 2015‎

Galectin-3 (Gal-3, LGALS3) is a pleotropic versatile, 29-35 kDa chimeric gene product, and involved in diverse physiological and pathological processes, including cell growth, homeostasis, apoptosis, pre-mRNA splicing, cell-cell and cell-matrix adhesion, cellular polarity, motility, adhesion, activation, differentiation, transformation, signaling, regulation of innate/adaptive immunity, and angiogenesis. In multiple diseases, it was found that the level of circulating Gal-3 is markedly elevated, suggesting that Gal-3-dependent function is mediated by specific interaction with yet an unknown ubiquitous cell-surface protein. Recently, we showed that Gal-3 attenuated drug-induced apoptosis, which is one of the mechanisms underlying multidrug resistance (MDR). Here, we document that MDR could be mediated by Gal-3 interaction with the house-keeping gene product e.g., Na+/K+-ATPase, and P-glycoprotein (P-gp). Gal-3 interacts with Na+/K+-ATPase and induces the phosphorylation of P-gp. We also find that Gal-3 binds P-gp and enhances its ATPase activity. Furthermore Gal-3 antagonist suppresses this interaction and results in a decrease of the phosphorylation and the ATPase activity of P-gp, leading to an increased sensitivity to doxorubicin-mediated cell death. Taken together, these findings may explain the reported roles of Gal-3 in diverse diseases and suggest that a combined therapy of inhibitors of Na+/K+-ATPase and Gal-3, and a disease specific drug(s) might be superior to a single therapeutic modality.


Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype.

  • Elisabet Cuyàs‎ et al.
  • Oncotarget‎
  • 2015‎

Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: