Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

The sympathetic nervous system tonically inhibits peripheral interleukin-1beta and interleukin-6 induction by central lipopolysaccharide.

  • A De Luigi‎ et al.
  • Neuroscience‎
  • 1998‎

To study the role of the sympathetic nervous system in the induction of inflammatory cytokines elicited by central lipopolysaccharide, sympathetic chemical denervation was performed by intraperitoneal injection of 6-hydroxydopamine. Rats received the neurotoxin according to the following schedule: 50 mg/kg on days 1 and 2, 100 mg/kg on days 3, 4 and 7. On day 8, lipopolysaccharide (2.5 microg/6 microl/rat) was injected intracerebroventricularly and rats were killed 2 h later. 6-Hydroxydopamine reduced noradrenaline and dopamine content in the spleen by 88.7% and 88.8% respectively, without affecting striatal contents indicating that the chemical sympathectomy had been effective and selective. In sympathectomized rats, lipopolysaccharide raised interleukin-1beta and interleukin-6 serum levels more than in control rats given the vehicle. Tumour necrosis factor-alpha serum levels in sympathectomized rats were no different from those in vehicle-treated rats. Interleukin-1beta and interleukin-6 messenger RNA expression, measured by northern blot analysis, was clearly detectable in adrenals and spleen of rats given lipopolysaccharide. Sympathectomy increased lipopolysaccharide-induced interleukin-1beta and interleukin-6 messenger RNA in adrenals and spleen. Corticosterone basal levels were raised by central lipopolysaccharide and not further changed by sympathectomy. The present study shows that sympathetic nervous system denervation enhances the synthesis and production of peripheral interleukin-1beta and interleukin-6 in rats given central lipopolysaccharide and suggests a tonic inhibitory control of the sympathetic nervous system on these inflammatory cytokines.


Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus.

  • L Marson‎ et al.
  • Neuroscience‎
  • 1993‎

Transneuronal tracing techniques were used in order to identify putative spinal interneurons and brainstem sites involved in the control of penile function. Pseudorabies virus was injected into the corpus cavernosus tissue of the penis in rats. After a four day survival period, rats were perfused with fixative and virus-labelled neurons were identified by immunohistochemistry. Postganglionic neurons were retrogradely labelled in the major pelvic ganglia. In the spinal cord, sympathetic and parasympathetic preganglionic neurons were labelled transneuronally. Presumptive interneurons were also labelled in the lower thoracic and lumbosacral spinal cord in locations consistent with what is currently known about such interneurons. In the brainstem, transneuronally labelled neurons were found in the medulla, pons and hypothalamus. Regions consistently labelled included the nucleus paragigantocellularis, parapyramidal reticular formation of the medulla, raphe pallidus, raphe magnus, A5 noradrenergic cell group, Barrington's nucleus and the paraventricular nucleus of the hypothalamus. This study confirmed previous studies from our lab and others concerning the preganglionic and postganglionic neurons innervating the penis. The number, morphology and location of these neurons were consistent with labelling seen following injection of conventional tracers into the penis. The brainstem nuclei labelled in this study were also consistent with what is currently known about the brainstem control of penile function. The labelling appeared to be highly specific, in that descending systems involved in other functions were not labelled. These results provide further evidence that the pseudorabies virus transneuronal tracing technique is a valuable method for identifying neural circuits mediating specific functions.


Co-expression studies of the orphan carrier protein Slc10a4 and the vesicular carriers VAChT and VMAT2 in the rat central and peripheral nervous system.

  • S Burger‎ et al.
  • Neuroscience‎
  • 2011‎

The orphan carrier protein Slc10a4 represents a novel member of the so-called "sodium-bile acid co-transporter family," SLC10. Slc10a4 has a close phylogenetic relationship with the liver bile acid carrier Ntcp (Slc10a1), but has no transport activity for bile acids. In a previous study Slc10a4 proved to be predominantly expressed in the rat brain, where it was localized within cholinergic neurons. However, whether this cholinergic expression pattern was exclusive for Slc10a4 and whether this protein might also be expressed in the peripheral nervous system or other peripheral organs, remained unclear. Therefore, in the present study we analyzed the expression of Slc10a4 in neuronal and non-neuronal rat tissues more systematically, employing immunofluorescence co-localization studies of the vesicular acetylcholine transporter VAChT and the vesicular monoamine transporter VMAT2. The Slc10a4 protein was found to be widely expressed throughout structures of the CNS and peripheral nervous system. In addition to cholinergic neurons in the CNS, the retina, the neuromuscular junction and parasympathetic innervations, Slc10a4 was also localized in certain monoaminergic neurons and nerve fibers in the substantia nigra, the spinal cord and sympathetic innervations. Slc10a4 expression was also detected in granules of rat peritoneal and tissue mast cells using immunofluorescence and electron microscopy. Western blot and immunoprecipitation experiments with rat brain vesicle preparations revealed that the Slc10a4 protein was expressed in synaptic vesicles where it co-localized with synaptophysin, VAChT and VMAT2. This vesicular expression pattern was also shown in the rat adrenal pheochromocytoma cell line PC12 by immunofluorescence. Based on the findings of the present study we can speculate about the function of Slc10a4 as follows: (I) Slc10a4 could be a novel vesicular transporter for cholinergic and/or various monoaminergic neurotransmitters in the central and peripheral nervous system or (II) may be involved in the regulation of the synaptic vesicle sorting or exocytosis process.


Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia.

  • P M Masliukov‎ et al.
  • Neuroscience‎
  • 2014‎

Neurochemical features in sympathetic and afferent neurons are subject to change during development. Nitric oxide (NO) plays a developmental role in the nervous system. To better understand the neuroplasticity of sympathetic and afferent neurons during postnatal ontogenesis, the distribution of neuronal NO synthase (nNOS) immunoreactivity was studied in the sympathetic para- and prevertebral, nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from female Wistar rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 1-year-old, and 3-year-old). nNOS-positive neurons were revealed in all sensory ganglia but not in sympathetic ones from birth onward. The percentage of nNOS-immunoreactive (IR) neurons increased during first 10 days of life from 41.3 to 57.6 in Th2 DRG, from 40.9 to 59.1 in L4 DRG and from 31.6 to 38.5 in NG. The percentage of nNOS-IR neurons did not change in the NG later during development and senescence. However, in Th2 and L4 DRG the proportion of nNOS-IR neurons was high in animals between 10 and 30days of life and decreased up to the second month of life. In 2-month-old rats, the percentage of nNOS-IR neurons was 52.9 in Th2 DRG and 51.3 in L4 DRG. We did not find statistically significant differences in the percentage of nNOS-IR neurons between Th2 and L4 DRG and between young and aged rats. In NG and DRG of 10-day-old and older rats, a high proportion of nNOS-IR neurons binds isolectin B4. In newborn animals, only 41.3%, 45.3% and 28.4% of nNOS neuron profiles bind to IB4 in Th2, L4 DRG and NG, respectively. In 10-day-old and older rats, the number of sensory nNOS-IR neurons binding IB4 reached more than 90% in DRG and more than 80% in NG. Only a small number of nNOS-positive cells showed immunoreactivity to calcitonin gene-related peptide, neurofilament 200, calretinin. The information provided here will also serve as a basis for future studies investigating mechanisms of the development of sensory neurons.


Spontaneous rhythmogenic capabilities of sympathetic neuronal assemblies in the rat spinal cord slice.

  • M L Pierce‎ et al.
  • Neuroscience‎
  • 2010‎

Neuronal networks generating rhythmic activity as an emergent property are common throughout the nervous system. Some are responsible for rhythmic behaviours, as is the case for the spinal cord locomotor networks; however, for others the function is more subtle and usually involves information processing and/or transfer. An example of the latter is sympathetic nerve activity, which is synchronized into rhythmic bursts in vivo. This arrangement is postulated to offer improved control of target organ responses compared to tonic nerve activity. Traditionally, oscillogenic circuits in the brainstem are credited with generating these rhythms, despite evidence for the persistence of some frequencies in spinalized preparations. Here, we show that rhythmic population activity can be recorded from the intermediolateral cell column (IML) of thoracic spinal cord slices. Recorded in slices from 10- to 12-day-old rats, this activity was manifest as 8-22 Hz oscillations in the field potential and was spatially restricted to the IML. Oscillations often occurred spontaneously, but could also be induced by application of 5-HT, α-methyl 5-HT or MK212. These agents also significantly increased the strength of spontaneous oscillations. Rhythmic activity was abolished by TTX and attenuated by application of gap junction blockers or by antagonists of GABA(A) receptors. Together these data indicate that this rhythm is an emergent feature of a population of spinal neurons coupled by gap junctions. This work questions the assumption that sympathetic rhythms are dependent on supraspinal pacemaker circuits, by highlighting a surprisingly strong rhythmogenic capability of the reduced sympathetic networks of the spinal cord slice.


Proportions of renal and splenic postganglionic sympathetic populations containing galanin and dopamine beta hydroxylase.

  • C D Longley‎ et al.
  • Neuroscience‎
  • 1993‎

Galanin is a 29-amino acid neuropeptide found in rat spinal cord, autonomic ganglia and gastrointestinal tract, as well as in other areas of the nervous system in rats and other species. As part of an overall objective to determine if peptides contribute to target-specific control of visceral function, this study was designed to determine the percentages of populations of renal and splenic postganglionic neurons that contain galanin, and to determine if these neurons were likely to be adrenergic. Retrogradely transported fluorescent dyes were placed on renal and splenic nerves in male Wistar rats anaesthetized with sodium pento-barbital. Four days post-operatively, rats were perfused transcardially with fixative, and T12-L1 thoracolumbar chain ganglia, splanchnic ganglia and the solar plexus were removed. Immunocytochemical methods were then used to determine the proportions of the retrogradely labelled renal and splenic neurons containing galanin-like immunoreactivity and dopamine beta hydroxylase-like immunoreactivity. In seven rats, 24 +/- 3% of 2838 renal neurons were found to contain galanin-like immunoreactivity; in six rats, 32 +/- 5% of 5102 splenic neurons were found to contain galanin-like immunoreactivity. These proportions of the two populations were not significantly different from one another. In three rats, 94 +/- 2% of 684 renal neurons were found to contain dopamine beta hydroxylase-like immunoreactivity, and 95 +/- 2% of 2597 splenic neurons in three rats also showed dopamine beta hydroxylase-like immunoreactivity. These experiments indicate that subpopulations of both renal and splenic postganglionic sympathetic neurons contain the neuropeptide galanin and that these neurons are likely to be adrenergic in function. These findings suggest a role for galanin in control of the kidney and the spleen by the sympathetic nervous system.


Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

  • Sara Touj‎ et al.
  • Neuroscience‎
  • 2017‎

Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system.


Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia.

  • M K Nøhr‎ et al.
  • Neuroscience‎
  • 2015‎

G-protein-coupled receptor 41 (GPR41) also called free fatty acid receptor 3 (FFAR3) is a Gαi-coupled receptor activated by short-chain fatty acids (SCFAs) mainly produced from dietary complex carbohydrate fibers in the large intestine as products of fermentation by microbiota. FFAR3 is expressed in enteroendocrine cells, but has recently also been shown to be present in sympathetic neurons of the superior cervical ganglion. The aim of this study was to investigate whether the FFAR3 is present in other autonomic and sensory ganglia possibly influencing gut physiology. Cryostat sections were cut of autonomic and sensory ganglia of a transgenic reporter mouse expressing the monomeric red fluorescent protein (mRFP) gene under the control of the FFAR3 promoter. Control for specific expression was also done by immunohistochemistry with an antibody against the reporter protein. mRFP expression was as expected found not only in neurons of the superior cervical ganglion, but also in sympathetic ganglia of the thoracic and lumbar sympathetic trunk. Further, neurons in prevertebral ganglia expressed the mRFP reporter. FFAR3-mRFP-expressing neurons were also present in both autonomic and sensory ganglia such as the vagal ganglion, the spinal dorsal root ganglion and the trigeminal ganglion. No expression was observed in the brain or spinal cord. By use of radioactive-labeled antisense DNA probes, mRNA encoding the FFAR3 was found to be present in cells of the same ganglia. Further, the expression of the FFAR3 in the ganglia of the transgenic mice was confirmed by immunohistochemistry using an antibody directed against the receptor protein, and double labeling colocalized mRFP and the FFAR3-protein in the same neurons. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) on extracts from the ganglia supported the presence mRNA encoding the FFAR3 in most of the investigated tissues. These data indicate that FFAR3 is expressed on postganglionic sympathetic and sensory neurons in both the autonomic and somatic peripheral nervous system and that SCFAs act not only through the enteroendocrine system but also directly by modifying physiological reflexes integrating the peripheral nervous system and the gastro-intestinal tract.


Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain.

  • W G Mantyh‎ et al.
  • Neuroscience‎
  • 2010‎

For many patients, pain is the first sign of cancer and, while pain can be present at any time, the frequency and intensity of pain tend to increase with advancing stages of the disease. Thus, between 75 and 90% of patients with metastatic or advanced-stage cancer will experience significant cancer-induced pain. One major unanswered question is why cancer pain increases and frequently becomes more difficult to fully control with disease progression. To gain insight into this question we used a mouse model of bone cancer pain to demonstrate that as tumor growth progresses within bone, tropomyosin receptor kinase A (TrkA)-expressing sensory and sympathetic nerve fibers undergo profuse sprouting and form neuroma-like structures. To address what is driving the pathological nerve reorganization we administered an antibody to nerve growth factor (anti-NGF). Early sustained administration of anti-NGF, whose cognate receptor is TrkA, blocks the pathological sprouting of sensory and sympathetic nerve fibers, the formation of neuroma-like structures, and inhibits the development of cancer pain. These results suggest that cancer cells and their associated stromal cells release nerve growth factor (NGF), which induces a pathological remodeling of sensory and sympathetic nerve fibers. This pathological remodeling of the peripheral nervous system then participates in driving cancer pain. Similar to therapies that target the cancer itself, the data presented here suggest that, the earlier therapies blocking this pathological nerve remodeling are initiated, the more effective the control of cancer pain.


Characterization of sheep (Ovis aries) palatine tonsil innervation.

  • D Russo‎ et al.
  • Neuroscience‎
  • 2009‎

Palatine tonsils (PTs), together with ileal Peyer's patches, rank among the first colonization sites for infectious prions. After replicating in these lymphoid tissues, prions undertake the process of "neuroinvasion," which is likely mediated by the peripheral nerves connecting lymphoid tissues to the central nervous system (CNS). To study the connections between the tonsils and the CNS, we injected fluorescent tracers into the PTs of lambs; the highest number of Fast Blue (FB)-labeled neurons was found in cranial cervical ganglia (CCG), whereas a progressively decreasing number of cells were detected in proximal glossopharyngeal, proximal vagal, trigeminal, pterygopalatine, and cervicothoracic ganglia. Immunohistochemistry was carried out on tonsil and ganglia cryosections. Immunoreactivity (IR) for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuronal nitric oxide synthase (nNOS), calcitonin gene-related peptide (CGRP), substance P (SP), and calcium-binding protein S100 (S100), was observed in the fibers around and within PT lymphoid nodules. In the trigeminal, proximal glossopharyngeal and vagal ganglia the retrogradely-labeled neurons showed nNOS-, SP- and CGRP-IR. In all ganglia some retrogradely-labeled neurons showed nNOS-, SP- and CGRP-IR co-localization. It is worth noting that only 66+/-19% and 75+/-13% of retrogradely-labeled neurons in CCG showed TH- and DBH-IR, respectively. The present results allow us to attribute PT innervation mainly to the sympathetic component and to the glossopharyngeal, vagal and trigeminal cranial nerves. Furthermore, these data also provide a plausible anatomic route through which infectious agents, such as prions, may access the CNS, i.e. by traveling along several cranial and sympathetic nerves, as well as by migration via glial cells.


Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129.

  • A E McGovern‎ et al.
  • Neuroscience‎
  • 2012‎

Sensory input from the airways to suprapontine brain regions contributes to respiratory sensations and the regulation of respiratory function. However, relatively little is known about the central organization of this higher brain circuitry. We exploited the properties of the H129 strain of herpes simplex virus 1 (HSV-1) to perform anterograde transneuronal tracing of the central projections of airway afferent nerve pathways. The extrathoracic trachea in Sprague-Dawley rats was inoculated with HSV-1 H129, and tissues along the neuraxis were processed for HSV-1 immunoreactivity. H129 infection appeared in the vagal sensory ganglia within 24 h and the number of infected cells peaked at 72 h. Brainstem nuclei, including the nucleus of the solitary tract and trigeminal sensory nuclei were infected within 48 h, and within 96 h infected cells were evident within the pons (lateral and medial parabrachial nuclei), thalamus (ventral posteromedial, ventral posterolateral, submedius, and reticular nuclei), hypothalamus (paraventricular and lateral nuclei), subthalamus (zona incerta), and amygdala (central and anterior amygdala area). At later times H129 was detected in cortical forebrain regions including the insular, orbital, cingulate, and somatosensory cortices. Vagotomy significantly reduced the number of infected cells within vagal sensory nuclei in the brainstem, confirming the main pathway of viral transport is through the vagus nerves. Sympathetic postganglionic neurons in the stellate and superior cervical ganglia were infected by 72 h, however, there was no evidence for retrograde transynaptic movement of the virus in sympathetic pathways in the central nervous system (CNS). These data demonstrate the organization of key structures within the CNS that receive afferent projections from the extrathoracic airways that likely play a role in the perception of airway sensations.


An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.

  • L Polo-Parada‎ et al.
  • Neuroscience‎
  • 2006‎

Chromaffin cells of the adrenal medulla represent a primary output of the sympathetic nervous system. Their electrical stimulation evokes the fusion of large dense core granules with the cell membrane and the exocytic release of multiple transmitter molecules into the circulation. There the transmitters contribute to the regulation of basic metabolism of the organism. Under physiological activity, granule fusion and transmitter release are limited by activity-dependent Ca(2+) influx, entering through multiple isoforms of voltage-gated calcium channels. In this study we utilize perforated-patch voltage-clamp recordings and depolarize mouse chromaffin cells in situ with action potential-like waveforms to mimic physiological firing. We measure calcium influx through specific isoforms and measure cell capacitance as an index of granule fusion. Combining these approaches we calculate specific stimulus-secretion efficiencies for L-type, N-type, P/Q-type and R-type calcium channels under varied physiological activity levels. Current influx through all channel subtypes exhibited an activity-dependent depression. As expected P/Q-type channels, while responsible for modest Ca(2+) influx, are tightly coupled to catecholamine secretion under all conditions. We further find that stimulation designed to match sympathetic input under the acute stress response recruits L-type channels to a state of enhanced stimulus-secretion efficiency. N- and R-type channels do not undergo activity-dependent recruitment and remain loosely coupled to the secretion. Thus, only L-type channels exhibit activity-dependent changes in their stimulus-secretion function under physiological stimulation. Lastly, we show that treatment with the beta-adrenergic agonist, isoproterenol, specifically blocks the increase in the stimulus-secretion function of L-type channels. Thus, increased cell firing specifically enhances stimulus-secretion coupling of L-type Ca(2+) channels in chromaffin cells in situ. This mechanism is regulated by an adrenergic signaling pathway.


Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat.

  • J R Keast‎ et al.
  • Neuroscience‎
  • 1998‎

Although gonadal steroids are important determinants of the development and activity of various neuronal circuits in the brain and spinal cord, their function has been relatively poorly studied in the peripheral nervous system. In the present work, the effects of pre- and postpubertal castration were examined on the morphology of autonomic neurons that supply pelvic visceral organs in male rats. These neurons were identified by peripheral injection of fluorescent retrograde tracers and, in the major pelvic ganglion, were further classified as sympathetic or parasympathetic by means of immunostaining for tyrosine hydroxylase. Sizes of ganglion cell somata were indicated by areas of nucleated profiles in cryosections. The results show that, irrespective of whether castration was carried out at two or seven weeks-of-age, noradrenergic pelvic neurons that supply the vas deferens, prostate gland, urinary bladder or colon achieved only approximately 60% of the size of those in unoperated controls. In contrast, cholinergic pelvic neurons were unaffected by castration unless they supplied reproductive targets. Pre- and paravertebral sympathetic neurons that supplied the pelvic viscera were only slightly smaller following castration or were unchanged, depending on their target. All effects of castration were prevented by testosterone replacement following surgery. Androgen receptor-immunoreactivity was particularly prevalent in the nuclei of some pelvic ganglion neurons. The studies suggest that circulating androgens are essential for the maturation and maintenance of the structure of select groups of autonomic neurons that supply the viscera. The presence of androgen receptor immunoreactivity in many of these neurons indicates that direct neuronal effects of androgens are possible. However this does not exclude other less direct mechanisms of steroid action on neurons, such as by an effect on target organs, neurotrophic factor release or peripheral vascular supply. These studies point to the androgenic steroids as potentially important determinants of autonomic reflex function.


Direct effects of glucose, insulin, GLP-1, and GIP on bulbospinal neurons in the rostral ventrolateral medulla in neonatal wistar rats.

  • Naoki Oshima‎ et al.
  • Neuroscience‎
  • 2017‎

Although patients with diabetes mellitus (DM) often exhibit hypertension, the mechanisms responsible for this correlation are not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are affected by the levels of glucose, insulin, or incretins (glucagon like peptide-1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) in patients with DM. To investigate whether RVLM neurons are activated by glucose, insulin, GLP-1, or GIP, we examined changes in the membrane potentials of bulbospinal RVLM neurons using whole-cell patch-clamp technique during superfusion with various levels of glucose or these hormones in neonatal Wistar rats. A brainstem-spinal cord preparation was used for the experiments. A low level of glucose stimulated bulbospinal RVLM neurons. During insulin superfusion, almost all the RVLM neurons were depolarized, while during GLP-1 or GIP superfusion, almost all the RVLM neurons were hyperpolarized. Next, histological examinations were performed to examine transporters for glucose and receptors for insulin, GLP-1, and GIP on RVLM neurons. Low-level glucose-depolarized RVLM neurons exhibited the presence of glucose transporter 3 (GLUT3). Meanwhile, insulin-depolarized, GLP-1-hyperpolarized, and GIP-hyperpolarized RVLM neurons showed each of the respective specific receptor. These results indicate that a low level of glucose stimulates bulbospinal RVLM neurons via specific transporters on these neurons, inducing hypertension. Furthermore, an increase in insulin or a reduction in incretins may also activate the sympathetic nervous system and induce hypertension by activating RVLM neurons via their own receptors.


Uric acid, indoxyl sulfate, and methylguanidine activate bulbospinal neurons in the RVLM via their specific transporters and by producing oxidative stress.

  • N Oshima‎ et al.
  • Neuroscience‎
  • 2015‎

Patients with chronic renal failure often have hypertension, but the cause of hypertension, other than an excess of body fluid, is not well known. We hypothesized that the bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are stimulated by uremic toxins in patients with chronic renal failure. To investigate whether RVLM neurons are sensitive to uremic toxins, such as uric acid, indoxyl sulfate, or methylguanidine, we examined changes in the membrane potentials (MPs) of bulbospinal RVLM neurons of Wister rats using the whole-cell patch-clamp technique during superfusion with these toxins. A brainstem-spinal cord preparation that preserved the sympathetic nervous system was used for the experiments. During uric acid, indoxyl sulfate, or methylguanidine superfusion, almost all the RVLM neurons were depolarized. To examine the transporters for these toxins on RVLM neurons, histological examinations were performed. The uric acid-, indoxyl sulfate-, and methylguanidine-depolarized RVLM neurons showed the presence of urate transporter 1 (URAT 1), organic anion transporter (OAT)1 or OAT3, and organic cation transporter (OCT)3, respectively. Furthermore, the toxin-induced activities of the RVLM neurons were suppressed by the addition of an anti-oxidation drug (VAS2870, an NAD(P)H oxidase inhibitor), and a histological examination revealed the presence of NAD(P)H oxidase (nox)2 and nox4 in these RVLM neurons. The present results show that uric acid, indoxyl sulfate, and methylguanidine directly stimulate bulbospinal RVLM neurons via specific transporters on these neurons and by producing oxidative stress. These uremic toxins may cause hypertension by activating RVLM neurons.


Cardiovascular actions of adrenocorticotropin microinjections into the nucleus tractus solitarius of the rat.

  • S Brown‎ et al.
  • Neuroscience‎
  • 2006‎

The presence of adrenocorticotropin (ACTH) containing cells and melanocortin (MC) receptors has been reported in the nucleus tractus solitarius (NTS) of the rat. The importance of the NTS in the regulation of cardiovascular function is also well established. Based on these reports, it was hypothesized that ACTH acting within the NTS may modulate the central regulation of cardiovascular function. To test this hypothesis, cardiovascular effects of ACTH in the NTS were investigated in intact urethane-anesthetized and unanesthetized decerebrate, artificially ventilated, adult male Wistar rats. Microinjections of ACTH (0, 0.5, 1, 2, and 4 mM) into the medial subnucleus of NTS (mNTS) elicited decreases in mean arterial pressure (MAP; 0+/-0, 24.4+/-3.5, 35.7+/-4.3, 44.5+/-5.8 and 53.7+/-5.6 mm Hg, respectively) and heart rate (HR; 0+/-0, 25.7+/-5.3, 35.5+/-6.4, 47.5+/-12.1 and 55.0+/-5.6 beats/min, respectively). The onset and duration of the responses to microinjections of ACTH (0.5-4 mM) were 5-10 s and 45-120 s, respectively. Control microinjections of artificial cerebrospinal fluid (aCSF) did not elicit any response. The volume of all microinjections was 100 nl. The concentrations of ACTH that elicited depressor and bradycardic responses when microinjected into the mNTS (e.g. 1 or 2 mM, 100 nl), did not elicit a response when injected i.v. (n=5) or i.c.v. (n=2) indicating that there was no leakage of the drug from the injection site in the mNTS. Microinjections of MC3/4 receptor antagonists (acetyl-[Nle(4), Asp(5), d-2-Nal(7), Lys(10)]-cyclo-alpha-MSH amide, fragments 4-10 (SHU9119) and agouti-related protein (83-132) amide) into the mNTS blocked the responses to ACTH. Microinjections of ACTH (2 mM) into the mNTS decreased efferent greater splanchnic nerve activity. Bilateral vagotomy significantly attenuated ACTH-induced bradycardia. These results indicated that: 1) microinjections of ACTH into the mNTS elicited depressor and bradycardic responses, 2) these responses were mediated via MC3/4 receptors, 3) the depressor effects were mediated via a decrease in the activity of the sympathetic nervous system, and 4) the bradycardic responses were vagally mediated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: