Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Dialysis Preparation of Smart Redox and Acidity Dual Responsive Tea Polyphenol Functionalized Calcium Phosphate Nanospheres as Anticancer Drug Carriers.

  • Xiuli Ren‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Large-scale preparation of biocompatible drug delivery systems with targeted recognition and controlled release properties has always been attractive. However, this strategy has been constrained by a lot of design challenges, such as complicated steps and premature drug release. Herein, in this paper, we address these problems by a facile in situ mineralization method, which synthesizes biodegradable tea polyphenol coated monodisperse calcium phosphate nanospheres using for targeted and controlled delivery of doxorubicin. Dialysis diffusion method was used to control ion release to form mineralized nanospheres. The polyphenol coatings and calcium phosphate used in this work could be biodegraded by intracellular glutathione and acidic microenvironment, respectively, resulting the release of encapsulated drug. According to confocal fluorescence microscopy, and cytotoxicity experiments, the prepared tea polyphenol functionalized, doxorubicin loaded calcium phosphate nanospheres were confirmed to have highly efficient internalization and obvious cell killing effect on target tumor cells, but not normal cells. Our results suggest that these tea polyphenols functionalized calcium phosphate nanospheres are promising vehicles for controlled release of an anticancer drug in cancer therapy.


From Colloidal Dispersions of Zeolite Monolayers to Effective Solid Catalysts in Transformations of Bulky Organic Molecules: Role of Freeze-Drying and Dialysis.

  • Katarzyna Kałahurska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

We investigated the properties and catalytic activity of zeolites with MWW topology obtained by unprecedented liquid exfoliation of the MCM-56 zeolite into solutions of monolayers and isolation/reassembly of the dispersed layers by various methods, with optional purification by dialysis or ammonium exchange. The layers were recovered by flocculation with alcohol or ammonium nitrate and freeze-drying. Flocculation alone, even with ammonium nitrate, did not ensure removal of residual sodium cations resulting in catalysts with low activity. Dialysis of the solutions with dispersed monolayers proved to be efficient in removing sodium cations and preserving microporosity. The monolayers were also isolated as solids by freeze-drying. The highest BET area and pore volume obtained with the freeze-dried sample confirmed lyophilization efficiency in preserving layer structure. The applied test reaction, Friedel-Crafts alkylation of mesitylene, showed high benzyl alcohol conversion due to increased concentration of accessible acid centers caused by the presence of secondary mesoporosity. The applied treatments did not change the acid strength of the external acid sites, which are the most important ones for converting bulky organic molecules. Zeolite acidity was not degraded in the course of exfoliation into monolayers, showing the potential of such colloid dispersions for the formation of active catalysts.


Quantitative Analysis of Tozadenant Using Liquid Chromatography-Mass Spectrometric Method in Rat Plasma and Its Human Pharmacokinetics Prediction Using Physiologically Based Pharmacokinetic Modeling.

  • Byeong Ill Lee‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Tozadenant is one of the selective adenosine A2a receptor antagonists with a potential to be a new Parkinson's disease (PD) therapeutic drug. In this study, a liquid chromatography-mass spectrometry based bioanalytical method was qualified and applied for the quantitative analysis of tozadenant in rat plasma. A good calibration curve was observed in the range from 1.01 to 2200 ng/mL for tozadenant using a quadratic regression. In vitro and preclinical in vivo pharmacokinetic (PK) properties of tozadenant were studied through the developed bioanalytical methods, and human PK profiles were predicted using physiologically based pharmacokinetic (PBPK) modeling based on these values. The PBPK model was initially optimized using in vitro and in vivo PK data obtained by intravenous administration at a dose of 1 mg/kg in rats. Other in vivo PK data in rats were used to validate the PBPK model. The human PK of tozadenant after oral administration at a dose of 240 mg was simulated by using an optimized and validated PBPK model. The predicted human PK parameters and profiles were similar to the observed clinical data. As a result, optimized PBPK model could reasonably predict the PK in human.


Transgelin-2 in Multiple Myeloma: A New Marker of Renal Impairment?

  • Karolina Woziwodzka‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Transgelin is a 22-kDa protein involved in cytoskeletal organization and expressed in smooth muscle tissue. According to animal studies, it is a potential mediator of kidney injury and fibrosis, and moreover, its role in tumorigenesis is emerging in a variety of cancers. The study included 126 ambulatory patients with multiple myeloma (MM). Serum transgelin-2 concentrations were measured by enzyme-linked immunoassay. We evaluated associations between baseline transgelin and kidney function (serum creatinine, estimated glomerular filtration rate-eGFR, urinary markers of tubular injury: cystatin-C, neutrophil gelatinase associated lipocalin-NGAL monomer, cell cycle arrest biomarkers IGFBP-7 and TIMP-2) and markers of MM burden. Baseline serum transgelin was also evaluated as a predictor of kidney function after a follow-up of 27 months from the start of the study. Significant correlations were detected between serum transgelin-2 and serum creatinine (R = 0.29; p = 0.001) and eGFR (R = -0.25; p = 0.007). Transgelin significantly correlated with serum free light chains lambda (R = 0.18; p = 0.047) and serum periostin (R = -0.22; p = 0.013), after exclusion of smoldering MM patients. Patients with decreasing eGFR had higher transgelin levels (median 106.6 versus 83.9 ng/mL), although the difference was marginally significant (p = 0.05). However, baseline transgelin positively correlated with serum creatinine after the follow-up period (R = 0.37; p < 0.001) and negatively correlated with eGFR after the follow-up period (R = -0.33; p < 0.001). Moreover, higher baseline serum transgelin (beta = -0.11 ± 0.05; p = 0.032) significantly predicted lower eGFR values after the follow-up period, irrespective of baseline eGFR and follow-up duration. Our study shows for the first time that elevated serum transgelin is negatively associated with glomerular filtration in MM and predicts a decline in renal function over long-term follow-up.


Chitosan Encapsulated Meloxicam Nanoparticles for Sustained Drug Delivery Applications: Preparation, Characterization, and Pharmacokinetics in Wistar Rats.

  • Muralidhar Yegireddy‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Meloxicam (MLX) is currently used in the therapeutic management of both acute and chronic inflammatory disorders such as pain, injuries, osteoarthritis, and rheumatoid arthritis in both humans and animals. Gastrointestinal toxicity and occasional renal toxicity were observed in patients taking it for a long-term period. Meloxicam's late attainment of peak plasma concentration results in a slow onset of action. The goal of the current study was to prepare and characterize chitosan encapsulated meloxicam nanoparticles (CEMNPs) with high bioavailability and less gastro intestinal toxicity in order to prevent such issues. The size of the prepared CEMNPs was approximately 110-220 nm with a zetapotential of +39.9 mV and polydispersity index of 0.268, suggesting that they were uniformly dispersed nanoparticles. The FTIR and UV-Vis spectroscopy have confirmed the presence of MLX in the prepared CEMNPs. The pharmacokinetics have been studied with three groups of male Wistar rats receiving either of the treatments, viz., 4 mg·kg-1 of MLX and 1 or 4 mg·kg-1 of CEMNPs. Plasma samples were collected until 48 h post administration, and concentrations of MLX were quantified by using reverse (C18) phase HPLC. Non-compartmental analysis was applied to determine pharmacokinetic variables. Upon oral administration, the maximum concentration (Cmax) was reached in 4 h for CEMNPs and 6 h for MLX. The mean area under the plasma MLX concentration-time curve from 'zero' to infinity (AUC0-∞), half-life (t1/2β), and mean resident time (MRT) of 1 mg·kg-1 of CEMNPs was 1.4-, 2-, and 1.8-fold greater than 4 mg·kg-1 of MLX. The prepared CEMNPs demonstrated quicker absorption and prolonged release along with a significant improvement in the bioavailability of MLX, paving a prospective path for the development of drugs with enhanced bioavailability with less side effects.


Whey Protein Isolate-Chitosan PolyElectrolyte Nanoparticles as a Drug Delivery System.

  • Zahra Yadollahi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Whey protein isolate (WPI), employed as a carrier for a wide range of bioactive substances, suffers from a lack of colloidal stability in physiological conditions. Herein, we developed innovative stabilized PolyElectrolyte Nanoparticles (PENs) obtained by two techniques: polyelectrolyte complexation of negatively charged WPI and positively charged chitosan (CS), and ionic gelation in the presence of polyanion tripolyphosphate (TPP). Therefore, the WPI-based core was coated with a CS-based shell and then stabilized by TPP at pH 8. The nanostructures were characterized by physiochemical methods, and their encapsulation efficiency and in vitro release were evaluated. The spherical NPs with an average size of 248.57 ± 5.00 nm and surface charge of +10.80 ± 0.43 mV demonstrated high encapsulation efficiency (92.79 ± 0.69) and sustained release of a positively charged chemotherapeutic agent such as doxorubicin (DOX). Z-average size and size distribution also presented negligible increases in size and aggregates during the three weeks. The results obtained confirm the effectiveness of the simultaneous application of these methods to improve the colloidal stability of PEN.


A Novel Integrated Way for Deciphering the Glycan Code for the FimH Lectin.

  • Tetiana Dumych‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The fimbrial lectin FimH from uro- and enteropathogenic Escherichia coli binds with nanomolar affinity to oligomannose glycans exposing Manα1,3Man dimannosides at their non-reducing end, but only with micromolar affinities to Manα1,2Man dimannosides. These two dimannoses play a significantly distinct role in infection by E. coli. Manα1,2Man has been described early on as shielding the (Manα1,3Man) glycan that is more relevant to strong bacterial adhesion and invasion. We quantified the binding of the two dimannoses (Manα1,2Man and Manα1,3Man to FimH using ELLSA and isothermal microcalorimetry and calculated probabilities of binding modes using molecular dynamics simulations. Our experimentally and computationally determined binding energies confirm a higher affinity of FimH towards the dimannose Manα1,3Man. Manα1,2Man displays a much lower binding enthalpy combined with a high entropic gain. Most remarkably, our molecular dynamics simulations indicate that Manα1,2Man cannot easily take its major conformer from water into the FimH binding site and that FimH is interacting with two very different conformers of Manα1,2Man that occupy 42% and 28% respectively of conformational space. The finding that Manα1,2Man binding to FimH is unstable agrees with the earlier suggestion that E. coli may use the Manα1,2Man epitope for transient tethering along cell surfaces in order to enhance dispersion of the infection.


Isolation and Purification of Glucans from an Italian Cultivar of Ziziphus jujuba Mill. and In Vitro Effect on Skin Repair.

  • Alessia Fazio‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Glucans possess a broad spectrum of biological activities. In this context, the present study was performed to isolate glucans from an Italian cultivar of Ziziphus jujuba Mill. at three different harvesting periods, in order to evaluate their effects on wound healing. The dry fruits were subjected to an alkaline extraction and then isolated glucans were purified by dialyzation. The crude and soluble samples were characterized by FT-IR and SEM analyses. Afterwards, total, α- and β-glucan content was measured using an enzymatic procedure. The results highlighted that the glucan amount increased as the maturation proceeded as well as the β-glucan percentage, which ranged from 48.2 at the first harvesting to 65.4 at the third harvesting. Furthermore, the effects of isolated glucans on the viability and migration of keratinocytes were evaluated using the in vitro MTT and scratch wound assays. The best proliferative effects on keratinocyte migration have been achieved with soluble glucans from third harvesting at 100 μM after 24 and 48 h (*** P < 0.001). The same treated group showed significant narrowing of the scratch area after 24 h and complete closure of the injury after 48 h. The findings highlighted the effectiveness of soluble glucans on regeneration of damaged skin.


Anticancer Activity of Astaxanthin-Incorporated Chitosan Nanoparticles.

  • Eun Ju Hwang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2024‎

Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis procedure. All formulations of ChitoAST nanoparticles showed small diameters (less than 400 nm) with monomodal distributions. Analysis with Fourier transform infrared (FT-IR) spectroscopy confirmed the specific peaks of AST and Chito. Furthermore, ChitoAST nanoparticles were formed through electrostatic interactions between Chito and AST. In addition, ChitoAST nanoparticles showed superior antioxidant activity, as good as AST itself; the half maximal radical scavenging concentrations (RC50) of AST and ChitoAST nanoparticles were 11.8 and 29.3 µg/mL, respectively. In vitro, AST and ChitoAST nanoparticles at 10 and 20 µg/mL properly inhibited the production of intracellular reactive oxygen species (ROSs), nitric oxide (NO), and inducible nitric oxide synthase (iNOS). ChitoAST nanoparticles had no significant cytotoxicity against RAW264.7 cells or B16F10 melanoma cells, whereas AST and ChitoAST nanoparticles inhibited the growth of cancer cells. Furthermore, AST itself and ChitoAST nanoparticles (20 µg/mL) efficiently inhibited the migration of cancer cells in a wound healing assay. An in vivo study using mice and a pulmonary metastasis model showed that ChitoAST nanoparticles were efficiently delivered to a lung with B16F10 cell metastasis; i.e., fluorescence intensity in the lung was significantly higher than in other organs. We suggest that ChitoAST nanoparticles are promising candidates for antioxidative and anticancer therapies of B16F10 cells.


Nanoformulation and Evaluation of Oral Berberine-Loaded Liposomes.

  • Thuan Thi Duong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


One-step Preparation of a VHH-based Immunoadsorbent for the Extracorporeal Removal of β2-microglobulin.

  • Lijun Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Dialysis-related amyloidosis (DRA), which has been widely recognized to be associated with the accumulation of β2-microglobulin (β2-m) in blood, is one of the most common complications in patients receiving long-term dialysis treatment. The most significant side-effect of existing hemodialysis sorbents for the removal of β2-m from blood is the loss of vital proteins due to non-specific adsorptions. Although the traditional antibodies have the capability to specifically remove β2-m from blood, high cost limits their applications in clinics. Single domain antibodies derived from the Camelidae species serve as a superior choice in the preparation of immunoadsorbents due to their small size, high stability, amenability, simplicity of expression in microbes, and high affinity to recognize and interact with β2-m. In this study, we modified the anti-β2-m VHH by the formylglycine-generating enzyme (FGE), and then directly immobilized the aldehyde-modified VHH to the amino-activated beads. Notably, the fabrication is cost- and time-effective, since all the preparation steps were performed in the crude cell extract without rigorous purification. The accordingly prepared immunoadsorbent with VHHs as ligands exhibited the high capacity of β2-m (0.75 mg/mL). In conclusion, the VHH antibodies were successfully used as affinity ligands in the preparation of novel immunoadsorbents by the site-specific immobilization, and effectively adsorbed β2-m from blood, therefore opening a new avenue for efficient hemodialysis.


Novel ICP-OES-Based Method for the Reliable Determination of the Total Content of 15 Elements in Yerba Mate Drinks along with the Determination of Caffeine and the In Vitro Bioaccessibility of the Compounds.

  • Maja Welna‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

A fully validated inductively coupled plasma optical emission spectrometry (ICP-OES)-based method combined with a simplified sample preparation procedure for the determination of up to 15 elements (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn) in caffeinated yerba mate (YM) drinks was proposed. Various "green" treatments (acidification or dilution with a HNO3 solution and direct analysis of untreated YM with or without sonication (US)) that could replace the traditional total sample decomposition before spectrometric measurements were tested and compared. The key selection parameter was the analytical performance of the ICP-OES method obtained with each sample preparation procedure in terms of the precision and the trueness of results and limits of detection (LODs) of elements. It was found that the acidification of YMs with concentrated HNO3 to 5%, supported by US (10 min, room temperature (RT)), provided the best results, i.e., LODs at 0.11-8.5 ng g-1, precision below 5%, and trueness better than 5% (97.0%-105% as recoveries). Eleven YM drinks, commercially available on the Polish market, were analyzed with the proposed method. In addition to the mineral content, the concentration of caffeine in all analyzed YMs was determined and compared. Finally, the studies were completed by determining the bioaccessible fraction of selected elements and caffeine in YMs using in vitro gastrointestinal digestion (GID) in order to evaluate the nutritional value/risk assessment of these drinks. Accordingly, the bioaccessibility of nutritious elements (Ca, Fe, Mg, Mn, Zn) and caffeine was within 40%-59%. Except for Mn, it was established that by drinking daily 1 L of YMs, the recommended dietary intakes (RDIs) of the aforementioned essential elements were covered to a low degree (<4.5%). Hence, they are not an important source of these elements in the human diet. On the other hand, potentially toxic elements (Al, Ba, Sr) were found in a relatively inert form. Opposite to minerals, YMs can supply human organisms with quite high amounts of natural caffeine in bioaccessible form (31-70 mg per serving).


Tetramethoxystilbene-Loaded Liposomes Restore Reactive-Oxygen-Species-Mediated Attenuation of Dilator Responses in Rat Aortic Vessels Ex vivo.

  • Azziza Zaabalawi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The methylated analogue of the polyphenol resveratrol (RV), 2,3',4,5'-tetramethoxystilbene (TMS) displays potent antioxidant properties and is an effective cytochrome P450 (CYP) 1B1 inhibitor. The bioavailability of TMS is low. Therefore, the use of liposomes for the encapsulation of TMS is a promising delivery modality for enhanced uptake into tissues. We examined the effect of delivery of TMS in liposomes on the restoration of vasodilator responses of isolated aortic vessels after acute tension elevation ex vivo. Aortic vessels from young male Wistar rats were isolated, and endothelial-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) responses assessed. Acute tension elevation (1 h) significantly reduced ACh dilator responses, which were restored following incubation with superoxide dismutase or apocynin (an NADPH oxidase inhibitor). Incubation with TMS-loaded liposomes (mean diameter 157 ± 6 nm; PDI 0.097) significantly improved the attenuated dilator responses following tension elevation, which was sustained over a longer period (4 h) when compared to TMS solution. Endothelial denudation or co-incubation with L-NNA (Nω-nitro-l-arginine; nitric oxide synthase inhibitor) resulted in loss of dilator function. Our findings suggest that TMS-loaded liposomes can restore attenuated endothelial-dependent dilator responses induced by an oxidative environment by reducing NADPH-oxidase-derived ROS and potentiating the release of the vasodilator nitric oxide. TMS-loaded liposomes may be a promising therapeutic strategy to restore vasodilator function in vascular disease.


Synthesis, DNA-binding and antiproliferative properties of acridine and 5-methylacridine derivatives.

  • Rubén Ferreira‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Several acridine derivatives were synthesized and their anti-proliferative activity was determined. The most active molecules were derivatives of 5-methylacridine-4-carboxylic acid. The DNA binding properties of the synthesized acridines were analyzed by competitive dialysis and compared with the anti-proliferative activities. While inactive acridine derivatives showed high selectivity for G-quadruplex structures, the most active 5-methylacridine-4-carboxamide derivatives had high affinity for DNA but showed poor specificity. An NMR titration study was performed with the most active 5-methylacridine-4-carboxamide, confirming the high affinity of this compound for both duplex and quadruplex DNAs.


Evaluation of Quality, Antioxidant Capacity, and Digestibility of Chickpea (Cicer arietinum L. cv Blanoro) Stored under N2 and CO2 Atmospheres.

  • Liliana Maribel Perez-Perez‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.


Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations.

  • Md Lokman Hossain‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Methylglyoxal (MGO) is considered to be one of the vital components responsible for the anti-bacterial activity of Leptospermum spp. (Manuka) honey. While many studies have demonstrated a dose-dependent antibacterial activity for MGO in vitro, from a therapeutic viewpoint, it is also important to confirm its release from Manuka honey and also from Manuka honey-based formulations. This study is the first to report on the release profile of MGO from five commercial products containing Manuka honey using a Franz diffusion cell and High-Performance Liquid Chromatography (HPLC) analysis. The release of MGO expressed as percentage release of MGO content at baseline was monitored over a 12 h period and found to be 99.49 and 98.05% from an artificial honey matrix and NZ Manuka honey, respectively. For the investigated formulations, a time-dependent % MGO release between 85% and 97.18% was noted over the 12 h study period.


The Bioaccessibility of Antioxidants in Black Currant Puree after High Hydrostatic Pressure Treatment.

  • Urszula Trych‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The aim of the study was to investigate the effect of high-pressure processing (HPP) and thermal processing (TP) on the bioaccessibility of vitamin C and anthocyanins as well as changes in the antioxidant capacity (AC) using ABTS+• and DPPH• tests on blackcurrant (Ribes nigrum L.) puree during the steps in the digestive process. The puree was subjected to HPP at 200, 400, and 600 MPa for 5 min (room temperature) or TP at 85 °C for 10 min. The controls were untreated puree (P) and fruit crushed in a mortar (M). All the samples were digested in a static in vitro digestion model, including the mouth, stomach, and small intestine, and subjected to dialysis. The vitamin C, anthocyanin, and antioxidant capacity were monitored at each step of the digestion process. The potential bioaccessibility of the antioxidants studied was calculated in relation to the undigested sample. TP and HPP enabled a high content of vitamin C, anthocyanins, and AC to be maintained. After simulated digestion in the small intestine, a significant decrease was observed in the vitamin C and anthocyanins (approximately 98%) content. However, a high stability (approximately 70%) of both compounds was noted at the gastric stage. HPP and TP significantly affected the potential bioaccessibility of vitamin C and anthocyanins, although the bioaccessibility of both compounds in the samples treated using HPP was higher than when using TP. Moreover, the potential bioaccessibility of vitamin C after HPP treatment (400 and 600 MPa) was higher than the bioaccessibility calculated for the M and P control samples. TP and HPP treatment negatively affected anthocyanin bioaccessibility after dialysis. The most favorable pressure was 400 MPa, as it allowed maintaining the best antioxidant activity after digestion.


A Neoglycoprotein-Immobilized Fluorescent Magnetic Bead Suspension Multiplex Array for Galectin-Binding Studies.

  • Libo Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.


Enhancement of Bottle Gourd Oil Activity via Optimized Self-Dispersing Lipid Formulations (SDLFs) to Mitigate Isoproterenol-Evoked Cardiac Toxicity in Rats via Modulating BMP, MMP2, and miRNA-21 and miRNA-23a Genes' Expression.

  • Shereen S El-Mancy‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Bottle gourd (BG) oil (family Cucurbitaceae) has several pharmacological activities including a reduction of the hazard of cardiovascular and atherosclerosis conditions. This work aimed to develop and optimize self-dispersing lipid formulations (SDLFs) of BG oil by applying a full 32 factorial design. The formulation variables (oil concentration and surfactant mixture ratio) showed an obvious impact on the characters of the prepared BG-SDLFs including droplet size (DS), polydispersity index (PDI), emulsification time (ET), and transmission percentage (Tr%). The optimum BG-SDLF composed of 30% oil and Tween 80/Cremophor® RH40 (1:1) showed good emulsification characteristics and a better drug release profile compared with BG oil. In vivo study in isoproterenol-injected rats showed that BG oil and the optimized BG-SDLF improved cardiac function, by elevating the miRNA-23a gene expression level and decreasing miRNA-21 gene expression. They also caused the inhibition of the plasma B-type natriuretic peptide (BNP), N-terminal proatrial natriuretic peptide (NT-pro-BNP), cystatin c, galectin-3, lipoprotein-associated phospholipase A2 (Lp-PLA2), matrix metallopeptidase 2 (MMP2), cardiac troponin I (cTnI), and cardiac troponin T (cTnT). Our study demonstrated that BG oil and the optimized BG-SDLF provided a cardioprotection against isoproterenol-induced cardiac toxicity with better results in groups treated with the optimized BG-SDLF.


Structural Refolding and Thermal Stability of Myoglobin in the Presence of Mixture of Crowders: Importance of Various Interactions for Protein Stabilization in Crowded Conditions.

  • Zahoor Ahmad Parray‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The intracellular environment is overcrowded with a range of molecules (small and large), all of which influence protein conformation. As a result, understanding how proteins fold and stay functional in such crowded conditions is essential. Several in vitro experiments have looked into the effects of macromolecular crowding on different proteins. However, there are hardly any reports regarding small molecular crowders used alone and in mixtures to observe their effects on the structure and stability of the proteins, which mimics of the cellular conditions. Here we investigate the effect of different mixtures of crowders, ethylene glycol (EG) and its polymer polyethylene glycol (PEG 400 Da) on the structural and thermal stability of myoglobin (Mb). Our results show that monomer (EG) has no significant effect on the structure of Mb, while the polymer disrupts its structure and decreases its stability. Conversely, the additive effect of crowders showed structural refolding of the protein to some extent. Moreover, the calorimetric binding studies of the protein showed very weak interactions with the mixture of crowders. Usually, we can assume that soft interactions induce structural perturbations while exclusion volume effects stabilize the protein structure; therefore, we hypothesize that under in vivo crowded conditions, both phenomena occur and maintain the stability and function of proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: