Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,951 papers

Ablating CAR and integrin binding in adenovirus vectors reduces nontarget organ transduction and permits sustained bloodstream persistence following intraperitoneal administration.

  • Masaki Akiyama‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2004‎

To create tumor-targeted Ad vectors, ablation of native CAR and integrin receptor binding is crucial to enhance the specificity of tumor transduction. Toward this aim, we have previously created base vectors in which binding to CAR (single-ablated) or to both CAR and integrins (double-ablated) has been ablated. In this study, the biodistribution of the conventional (CAR and integrin binding intact), single-ablated, and double-ablated vectors was evaluated following intraperitoneal administration. The mesothelial lining of the peritoneal organs was the principle site of CAR-dependent gene transfer by the conventional vector. Surprisingly, the single-ablated vector strongly transduced the liver parenchyma rather than the mesothelium, while the double-ablated vector did not significantly transduce the parenchyma or mesothelium. The high level of parenchymal transduction by the single-ablated vector suggested that it efficiently entered the bloodstream from the peritoneal cavity. Consistent with this hypothesis, a large proportion of active particles distributed and persisted in the bloodstream following intraperitoneal administration of either the single- or the double-ablated vector. The above results suggest that the double-ablated vector backbone may not only significantly improve targeting to cancers located in the peritoneal cavity, but may also significantly improve targeting to metastatic tumors located throughout the body by virtue of its enhanced bloodstream persistence.


Transduction and selection of human T cells with novel CD34/thymidine kinase chimeric suicide genes for the treatment of graft-versus-host disease.

  • Michael P Rettig‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Clinical trials evaluating the herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) suicide gene therapy system for the control of graft-versus-host disease (GVHD) have been limited by low transduction efficiencies and inefficient selection procedures. In this study, we designed and evaluated a novel chimeric suicide gene consisting of the extracellular and transmembrane domains of human CD34 and full-length HSV-tk (DeltaCD34-tk). High-efficiency transfer of DeltaCD34-tk to primary human T cells was accomplished after a single exposure to VSV-G-pseudotyped, Moloney murine leukemia virus-based retrovirus 48 h after activation of human PBMCs with anti-CD3 and anti-CD28 antibodies immobilized on magnetic beads. Using an optimized 5-day transduction and selection procedure, transduction efficiencies averaged 71%, with isolation purities greater than 95% and yields exceeding 90%. The immunoselected T cells were selectively eliminated by GCV (IC(50) approximately 3 nM), maintained a normal subset composition, exhibited a polyclonal TCR Vbeta family repertoire, and contained 5 or 6 vector copies per transduced cell when optimally transduced. No increase in GCV sensitivity was observed upon incorporation of highly active mutant HSV-tk enzymes into the DeltaCD34-tk suicide gene. T cells modified with the DeltaCD34-tk gene using the optimized protocol should improve the overall efficacy of the HSV-tk/GCV suicide gene therapy method of GVHD control.


HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain.

  • Shuanglin Hao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Neuropathic pain is a difficult clinical problem that is often refractory to medical management. Glial-derived neurotrophic factor (GDNF) administered intrathecally has been shown to prevent or reduce pain in an animal model of neuropathic pain, but cannot be delivered in the required doses to treat human pain. We have previously demonstrated that peripheral subcutaneous inoculation of a replication-incompetent herpes simplex virus (HSV)-based vector can be used to transduce neurons of the dorsal root ganglion. To examine whether HSV-mediated expression of GDNF could be used to ameliorate neuropathic pain, we constructed a replication-incompetent HSV vector expressing GDNF. Subcutaneous inoculation of the vector 1 week after spinal nerve ligation resulted in a continuous antiallodynic effect that was maintained for 3-4 weeks. Reinoculation of the vector reestablished the antiallodynic effect with a magnitude that was at least equivalent to the initial effect. Vector-mediated GDNF expression blocked the nonnoxious touch-induced increase in c-fos expression in dorsal horn characteristic of the painful state. Gene transfer to produce a trophic factor offers a novel approach to the treatment of neuropathic pain that may be appropriate for human therapy.


Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction.

  • Kazuhiro Takahashi‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

In acute myocardial infarction (AMI), prognosis and mortality rate are closely related to the infarct size and the progression of postinfarction cardiac failure. Angiogenic gene therapy has presented a new approach for the treatment of AMI. Angiopoietin-1 (Ang1) is a critical angiogenic factor for vascular maturation and enhances vascular endothelial growth factor (VEGF)-induced angiogenesis in a complementary manner. We hypothesized that gene therapy using Ang1 for AMI might promote angiogenesis cooperatively with intrinsic VEGF, since high concentrations of circulating VEGF have been reported in AMI. To evaluate our hypothesis, we employed a rat AMI model and adenoviral Ang1 (HGMW-approved gene symbol ANGPT1) gene transfer to the heart. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with adenoviral Ang1 gene treatment compared with control infarcted hearts treated with saline or adenoviral vector containing the beta-galactosidase gene. Furthermore, the Ang1 group showed significantly higher cardiac performance in echocardiography (55.0% of ejection fraction, P < 0.05 vs control) than the saline or adenoviral controls (36.0 or 40.5%, respectively) 4 weeks after myocardial infarction. The adenoviral delivery of Ang1 during the acute phase of myocardial infarction would be feasible to attenuate the progression of cardiac dysfunction in the rat model.


Phenotype correction of Fanconi anemia group A hematopoietic stem cells using lentiviral vector.

  • Kaoru Yamada‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure due to defective stem cell function. FA patients' cells are hypersensitive to DNA cross-linking agents such as mitomycin C (MMC), exposure to which results in cytogenetic aberrations and cell death. To date Moloney murine leukemia virus vectors have been used in clinical gene therapy. Recently, third-generation lentiviral vectors based on the HIV-1 genome have been developed for efficient gene transfer to hematopoietic stem cells. We generated a self-inactivating lentiviral vector expressing the FA group A cDNA driven by the murine stem cell virus U3 LTR promoter and used the vector to transduce side-population (SP) cells isolated from bone marrow of Fanconi anemia group A (Fanca) knockout mice. One thousand transduced SP cells reconstituted the bone marrow of sublethally irradiated Fanca recipient mice. Phenotype correction was demonstrated by stable hematopoiesis following MMC challenge. Using real-time PCR, one proviral vector DNA copy per cell was detected in all lineage-committed cells in the peripheral blood of both primary and secondary recipients. Our results suggest that the lentiviral vector transduces stem cells capable of self-renewal and long-term hematopoiesis in vivo and is potentially useful for clinical gene therapy of FA hematopoietic cells.


Global analysis of cellular transcription following infection with an HIV-based vector.

  • Richard Mitchell‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

We have examined the changes in cellular transcription resulting from infection with HIV-based vectors. Previous work suggested that the incoming viral genome may under some circumstances be detected as DNA damage, so to explore this possibility, we compared the transcriptional response to infection with an HIV-based vector to the response to treatment with the DNA-damaging agent etoposide. Expression levels of about 12,000 cellular RNA transcripts were determined in a human B-cell line at different times after either treatment. Statistical analysis revealed that the infection with the lentivirus vector resulted in quite modest changes in gene expression. Treatment with etoposide, in contrast, caused drastic changes in expression of genes known or inferred to be involved in apoptosis. Statistically significant though subtle parallels in the cellular transcriptional responses to etoposide treatment and HIV-vector infection could be detected. Several further data sets analyzing infections with HIV-based vectors or wild-type HIV-1 showed similar modest effects on cellular transcription and very modest parallels among different data sets. These findings establish that HIV-vector or HIV-1 infection has remarkably little effect on cellular transcription. The statistical methods described here may be of wide use in mining microarray data sets. Our observations support the idea that gene therapy with HIV-based vectors should not be particularly toxic to cells due to disruption of cellular transcription.


Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification.

  • M Brandon Parrott‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Development of cell-targeting vectors is an important focus for gene therapy. While some ligands can be genetically inserted into virus capsid proteins for cell targeting, for many ligands, this approach can disrupt either ligand function or vector function. To address this problem for adenovirus type 5 vectors, the fiber capsid protein was genetically fused to a biotin acceptor peptide (BAP). Adenovirus particles bearing this BAP were metabolically biotinylated during vector production by the endogenous biotin ligase in 293 cells to produce covalently biotinylated virions. The resulting biotinylated vector could be retargeted to new receptors by conjugation to biotinylated antibodies using tetrameric avidin (K(d) = 10(-15) M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (K(d) = 10(-7) M). Finally, this vector was used as a ligand screening platform for dendritic cells in which a variety of structurally diverse protein, carbohydrate, and nucleic acid ligands were easily added to the vector using the biotin-avidin interaction. This work demonstrates the utility of metabolically biotinylated viruses for ligand screening, vector targeting, and virus purification applications.


Transduced CD34+ cells from adrenoleukodystrophy patients with HIV-derived vector mediate long-term engraftment of NOD/SCID mice.

  • Sonia Benhamida‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

X-linked adrenoleukodystrophy (ALD), an inherited demyelinating disorder of the central nervous system, can be corrected by allogeneic bone marrow transplantation, likely due to the turnover of brain macrophages that are bone marrow derived. ALD is characterized by an accumulation of very long chain fatty acids (VLCFA) due to the deficiency of an ATP binding cassette transporter that imports these fatty acids in peroxisomes. Murine retroviral transduction results in metabolic correction of ALD CD34(+) cells in vitro but reinfusion of these cells into ALD patients would not provide clinical benefit owing to the absence of selective advantage conferred by transgene expression. High-efficiency transduction of ALD CD34(+) peripheral blood mobilized cells was achieved using an HIV-based vector driving ALD gene expression under the elongation factor 1 alpha promoter and a protocol without prestimulation of CD34(+) cells with cytokines prior to transduction to preserve their stem cell properties. Efficient expression of the ALD gene was demonstrated in monocytes/macrophages derived from cultures of transduced ALD CD34(+) cells and in long-term culture initiating cells. VLCFA metabolism was corrected in transduced CD34(+), CFU-derived, and LTC-derived cells, indicating that the vector-encoded ALD protein was fully functional. Transplantation of transduced ALD CD34(+) cells into NOD/SCID mice resulted in long-term expression of ALD protein in monocytes/macrophages derived from engrafted stem cells.


Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis.

  • Jusan Yang‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Reactive oxygen species have been established as key mediators of cardiac injury following ischemia/reperfusion (I/R). We hypothesized that superoxide formation at different subcellular locations following cardiac I/R injury may differentially regulate cellular responses that determine pathophysiologic outcomes. Recombinant adenoviruses expressing Cu/ZnSOD or MnSOD were utilized to modulate superoxide levels in the cytoplasmic or mitochondrial compartments, respectively, prior to coronary artery I/R injury in the rat heart. Ectopic expression of both MnSOD and Cu/ZnSOD afforded protection from I/R injury, as evidenced by a significant reduction in serum creatine kinase levels, infarct size, malondialdehyde levels, and apoptotic cell death in comparison to controls. MnSOD and Cu/ZnSOD expression also significantly altered the kinetics of NF kappa B and AP-1 activation following I/R injury, characterized by a delayed induction of NF kappa B and abrogated AP-1 response. Western blot analysis of Bcl-2, Bcl-xL, Bad, Caspase 3, PDK1, and phospho-Akt also revealed SOD-mediated changes in gene expression consistent with protection and decreased apoptosis. These findings support the notion that both mitochondrial and cytoplasmic-derived SOD induce changes in AP-1 and NF kappa B activity, creating an antiapoptotic microenvironment within cardiomyocytes that affords protection following I/R injury.


Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice.

  • Abhijit De‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

Lentiviral-mediated gene delivery holds significant promise for sustained gene expression within living systems. Vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 1-based lentiviral vectors can be used to introduce transgenes in a broad spectrum of dividing as well as nondividing cells. In the current study, we construct a lentiviral vector carrying two reporter genes separated by an internal ribosomal entry site and utilize that virus in delivering both genes into neuroblastoma cells in cell culture and into cells implanted in living mice. We utilize two reporter genes, a mutant herpes simplex virus type 1 (HSV1) sr39tk as a reporter gene compatible with positron emission tomography (PET) and a bioluminescent optical reporter gene, firefly luciferase (Fluc), to image expression in living mice by an optical charge-coupled device (CCD) camera. By using this lentivirus, neuroblastoma (N2a) cells are stably transfected and a high correlation (R(2) = 0.91) between expressions of the two reporter genes in cell culture is established. Imaging of both reporter genes using microPET and optical CCD camera in living mice is feasible, with the optical approach being more sensitive, and a high correlation (R(2) = 0.86) between gene expressions is again observed in lentiviral-infected N2a tumor xenografts. Indirect imaging of HSV1-sr39tk suicide gene therapy utilizing Fluc is also feasible and can be detected with increased sensitivity by using the optical CCD. These preliminary results validate the use of lentiviral vectors carrying reporter genes for multimodality imaging of gene expression and should have many applications, including imaging of xenografts, metastasis, and cell trafficking as well as noninvasive monitoring of lentiviral-mediated gene delivery and expression.


Development of a formulation that enhances gene expression and efficacy following intraperitoneal administration in rabbits and mice.

  • Heidrun Engler‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2003‎

We conducted a series of experiments to determine if intraperitoneal (IP) delivery of recombinant adenovirus (rAd)-based therapies is improved through carrier vehicle selection, and compared an icodextrin solution (a high molecular weight dextrin with a prolonged peritoneal cavity residence time) with a standardized phosphate buffered saline (PBS) delivery solution. In vitro, comparative adenovirus particle concentration determination (27 h) and bioactivity assay (24h) indicated equivalent compatibility with icodextrin or PBS. In vivo, rabbits treated IP (100 ml) with rAd-betagal 1 x 10(9) P/ml in icodextrin showed improved transgene expression throughout the peritoneal wall compared to rAd-betagal in PBS. In PC-3 tumor-bearing mice treated IP with 5 x 10(9) P/0.5 ml or 1 x 10(10) P/0.5 ml rAd-betagal, transgene expression was significantly enhanced (p < 0.01) with icodextrin compared to PBS in both tumor specimens and peritoneal wall. In subsequent studies we compared prolongation of survival in intraperitoneal PC-3 and MDAH-2774 human xenograft tumor models in nude mice using rAd-p53 in icodextrin or PBS in multi-dose ranging (1 x 10(8) to 1 x 10(10) P) experiments. The icodextrin formulation alone significantly increased rAd-p53 mediated survival (p < 0.05). In animals, these results show that IP rAd gene therapy can be improved with the use of icodextrin, and suggest that prolonged retention and distribution in the peritoneal cavity is an important factor.


Hybrid lentivirus-transposon vectors with a random integration profile in human cells.

  • Nicklas H Staunstrup‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Gene delivery by human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) is efficient, but genomic integration of the viral DNA is strongly biased toward transcriptionally active loci resulting in an increased risk of insertional mutagenesis in gene therapy protocols. Nonviral Sleeping Beauty (SB) transposon vectors have a significantly safer insertion profile, but efficient delivery into relevant cell/tissue types is a limitation. In an attempt to combine the favorable features of the two vector systems we established a novel hybrid vector technology based on SB transposase-mediated insertion of lentiviral DNA circles generated during transduction of target cells with integrase (IN)-defective LVs (IDLVs). By construction of a lentivirus-transposon hybrid vector allowing transposition exclusively from circular viral DNA substrates, we demonstrate that SB transposase added in trans directs efficient transposon mobilization from DNA circles in vector-transduced cells. Both transfected plasmid DNA and transduced IDLVs can serve as the source of active transposase. Most important, we demonstrate that the SB transposase overrides the natural lentiviral integration pathway and directs vector integration less frequently toward transcriptional units, resulting in a random genomic integration profile. The novel hybrid vector system combines the attractive features of efficient gene delivery by viral transduction and a safer genomic integration profile by DNA transposition.


Sleeping beauty transposition from nonintegrating lentivirus.

  • Conrad A Vink‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Lentiviral vectors enter cells with high efficiency and deliver stable transduction through integration into host chromosomes, but their preference for integration within actively transcribing genes means that insertional mutagenesis following disruption of host proto-oncogenes is a recognized concern. We have addressed this problem by combining the efficient cell and nuclear entry properties of HIV-1-derived lentiviral vectors with the integration profile benefits of Sleeping Beauty (SB) transposase. Importantly, this integration enzyme does not exhibit a preference for integration within active genes. We generated integrase-deficient lentiviral vectors (IDLVs) to carry SB transposon and transposase expression cassettes. IDLVs were able to deliver transient transposase expression to target cells, and episomal lentiviral DNA was found to be a suitable substrate for integration via the SB pathway. The hybrid vector system allows genomic integration of a minimal promoter-transgene cassette flanked by short SB inverted repeats (IRs) but devoid of HIV-1 long terminal repeats (LTRs) or other virus-derived sequences. Importantly, integration site analysis revealed redirection toward a profile mimicking SB-plasmid integration and away from integration within transcriptionally active genes favored by integrase-proficient lentiviral vectors (ILVs).


Sonic hedgehog expands diaphyseal trabecular bone altering bone marrow niche and lymphocyte compartment.

  • Maija Kiuru‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Bone marrow contains distinct microenvironments that regulate hematopoietic stem cells (HSCs). The endosteal HSC niche includes osteoblasts, mineral, and extracellular matrix proteins that interact through various molecular signals to control HSCs. Sonic hedgehog (Shh) is a morphogen involved in the regulation of skeletal development and hematopoiesis, but the effects of Shh on bone in relation to the HSC niche are not well understood. We demonstrate that systemic overexpression of Shh in mice increases osteoblast number with the resultant formation of new trabeculae in the femoral diaphysis. Suggestive of a functional change in the hematopoietic niche, numbers of Lin(-) Sca-1(+) c-Kit(+) cells with hematopoietic progenitor function expand, although cells with in vivo repopulating capacity in the wild-type environment do not increase. Instead, Shh mediates a decrease in number of bone marrow lymphocytes accompanied by a decreased expression of stromal-derived growth factor 1 (SDF-1) and a decrease in Flk2-expressing Lin(-) Sca-1(+) c-Kit(+) cells, indicating a modulation of early lymphopoiesis. This is caused by a microenvironment-induced mechanism as Shh treatment of bone marrow recipients, but not donors, results in a dramatic depletion of lymphocytes. Together, these data suggest that Shh mediates alterations in the bone marrow hematopoietic niche affecting the early lymphoid differentiation.


Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability.

  • Katalin Karikó‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2008‎

In vitro-transcribed mRNAs encoding physiologically important proteins have considerable potential for therapeutic applications. However, in its present form, mRNA is unfeasible for clinical use because of its labile and immunogenic nature. Here, we investigated whether incorporation of naturally modified nucleotides into transcripts would confer enhanced biological properties to mRNA. We found that mRNAs containing pseudouridines have a higher translational capacity than unmodified mRNAs when tested in mammalian cells and lysates or administered intravenously into mice at 0.015-0.15 mg/kg doses. The delivered mRNA and the encoded protein could be detected in the spleen at 1, 4, and 24 hours after the injection, where both products were at significantly higher levels when pseudouridine-containing mRNA was administered. Even at higher doses, only the unmodified mRNA was immunogenic, inducing high serum levels of interferon-alpha (IFN-alpha). These findings indicate that nucleoside modification is an effective approach to enhance stability and translational capacity of mRNA while diminishing its immunogenicity in vivo. Improved properties conferred by pseudouridine make such mRNA a promising tool for both gene replacement and vaccination.


Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth.

  • Sarfraz Ahmad‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA.


Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7.

  • Juan F Vera‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Adoptive transfer of antigen-specific cytotoxic T lymphocytes (CTLs) can induce objective clinical responses in patients with malignant diseases. The option of providing a proliferative and survival advantage to adoptively transferred CTLs remains a challenge to improve their efficacy. Host lymphodepletion and administration of recombinant interleukin-2 (IL-2) are currently used to improve CTL survival and expansion after adoptive transfer, but these approaches are frequently associated with significant side effects and may increase proliferation of T regulatory cells. IL-7 is a crucial homeostatic cytokine that has been safely administered as a recombinant protein. However, while IL-7 induces robust expansion of naive and memory T lymphocytes, the lack of expression of the IL-7 receptor alpha chain (IL-7Ralpha) by CTLs precludes their response to this cytokine. We found that CTLs can be genetically modified to re-express IL-7Ralpha, and that this manipulation restores the response of these cells to IL-7 without apparent modification of their antigen specificity or dependency, and without changing their response to other common gamma (gammac) chain cytokines. This approach may allow selective expansion of CTLs without the unwanted effects associated with IL-2.


Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity.

  • Jeanette E Boudreau‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Dendritic cell (DC)-based vaccines are a promising strategy for tumor immunotherapy due to their ability to activate both antigen-specific T-cell immunity and innate immune effector components, including natural killer (NK) cells. However, the optimal mode of antigen delivery and DC activation remains to be determined. Using M protein mutant vesicular stomatitis virus (DeltaM51-VSV) as a gene-delivery vector, we demonstrate that a high level of transgene expression could be achieved in approximately 70% of DCs without affecting cell viability. Furthermore, DeltaM51-VSV infection activated DCs to produce proinflammatory cytokines (interleukin-12, tumor necrosis factor-alpha, and interferon (IFN)alpha/beta), and to display a mature phenotype (CD40(high)CD86(high) major histocompatibility complex (MHC II)(high)). When delivered to mice bearing 10-day-old lung metastatic tumors, DCs infected with DeltaM51-VSV encoding a tumor-associated antigen mediated significant control of tumor growth by engaging both NK and CD8(+) T cells. Importantly, depletion of NK cells completely abrogated tumor destruction, indicating that NK cells play a critical role for this DC vaccine-induced therapeutic outcome. Our findings identify DeltaM51-VSV as both an efficient gene-delivery vector and a maturation agent allowing DC vaccines to overcome immunosuppression in the tumor-bearing host.


Drug delivery-mediated control of RNA immunostimulation.

  • David N Nguyen‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

RNA interference (RNAi) has generated significant interest as a strategy to suppress viral infection, but in some cases antiviral activity of unmodified short-interfering RNA (siRNA) has been attributed to activation of innate immune responses. We hypothesized that immunostimulation by unmodified siRNA could mediate both RNAi as well as innate immune stimulation depending on the mode of drug delivery. We investigated the potential of immunostimulatory RNAs (isRNAs) to suppress influenza A virus in vivo in the mouse lung. Lipidoid 98N12-5(1) formulated with unmodified siRNA targeting the influenza nucleoprotein gene exhibited antiviral activity. Formulations were optimized to increase antiviral activity, but the antiviral activity of lipidoid-delivered siRNA did not depend on sequence homology to the influenza genome as siRNA directed against unrelated targets also suppressed influenza replication in vivo. This activity was primarily attributed to enhancement of innate immune stimulation by lipidoid-mediated delivery, which indicates increased toll-like receptor (TLR) activation by siRNA. Certain chemical modifications to the siRNA backbone, which block TLR7/8 activation but retain in vitro RNAi activity, prevented siRNA-mediated antiviral activity despite enhanced lipidoid-mediated delivery. Here, we demonstrate that innate immune activation caused by unmodified siRNA can have therapeutically relevant effects, and that these non-RNAi effects can be controlled through chemical modifications and drug delivery.


The FGF-2-derived peptide FREG inhibits melanoma growth in vitro and in vivo.

  • Maria S Aguzzi‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2011‎

Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: