Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 991 papers

Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules.

  • R T Green‎ et al.
  • Microbial genomics‎
  • 2019‎

Two common classes of nitrogen-fixing legume root nodules are those that have determinate or indeterminate meristems, as in Phaseolus bean and pea, respectively. In indeterminate nodules, rhizobia terminally differentiate into bacteroids with endoreduplicated genomes, whereas bacteroids from determinate nodules are less differentiated and can regrow. We used RNA sequencing to compare bacteroid gene expression in determinate and indeterminate nodules using two Rhizobium leguminosarum strains whose genomes differ due to replacement of the symbiosis (Sym) plasmid pRP2 (strain Rlp4292) with pRL1 (strain RlvA34), thereby switching symbiosis hosts from Phaseolus bean (determinate nodules) to pea (indeterminate nodules). Both bacteroid types have gene expression patterns typical of a stringent response, a stressful environment and catabolism of dicarboxylates, formate, amino acids and quaternary amines. Gene expression patterns were indicative that bean bacteroids were more limited for phosphate, sulphate and iron than pea bacteroids. Bean bacteroids had higher levels of expression of genes whose products are predicted to be associated with metabolite detoxification or export. Pea bacteroids had increased expression of genes associated with DNA replication, membrane synthesis and the TCA (tricarboxylic acid) cycle. Analysis of bacteroid-specific transporter genes was indicative of distinct differences in sugars and other compounds in the two nodule environments. Cell division genes were down-regulated in pea but not bean bacteroids, while DNA synthesis was increased in pea bacteroids. This is consistent with endoreduplication of pea bacteroids and their failure to regrow once nodules senesce.


Population genomics of pneumococcal carriage in Massachusetts children following introduction of PCV-13.

  • Patrick K Mitchell‎ et al.
  • Microbial genomics‎
  • 2019‎

The 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced in the United States in 2010. Using a large paediatric carriage sample collected from shortly after the introduction of PCV-7 to several years after the introduction of PCV-13, we investigate alterations in the composition of the pneumococcal population following the introduction of PCV-13, evaluating the extent to which the post-vaccination non-vaccine type (NVT) population mirrors that from prior to vaccine introduction and the effect of PCV-13 on vaccine type lineages. Draft genome assemblies from 736 newly sequenced and 616 previously published pneumococcal carriage isolates from children in Massachusetts between 2001 and 2014 were analysed. Isolates were classified into one of 22 sequence clusters (SCs) on the basis of their core genome sequence. We calculated the SC diversity for each sampling period as the probability that any two randomly drawn isolates from that period belong to different SCs. The sampling period immediately after the introduction of PCV-13 (2011) was found to have higher diversity than preceding (2007) or subsequent (2014) sampling periods {Simpson's D 2007: 0.915 [95 % confidence interval (CI) 0.901, 0.929]; 2011:  0.935 [0.927, 0.942]; 2014 :  0.912 [0.901, 0.923]}. Amongst NVT isolates, we found the distribution of SCs in 2011 to be significantly different from that in 2007 or 2014 (Fisher's exact test P=0.018, 0.0078), but did not find a difference comparing 2007 to 2014 (Fisher's exact test P=0.24), indicating greater similarity between samples separated by a longer time period than between samples from closer time periods. We also found changes in the accessory gene content of the NVT population between 2007 and 2011 to have been reduced by 2014. Amongst the new serotypes targeted by PCV-13, four were present in our sample. The proportion of our sample composed of PCV-13-only vaccine serotypes 19A, 6C and 7F decreased between 2007 and 2014, but no such reduction was seen for serotype 3. We did, however, observe differences in the genetic composition of the pre- and post-PCV-13 serotype 3 population. Our isolates were collected during discrete sampling periods from a small geographical area, which may limit the generalizability of our findings. Pneumococcal diversity increased immediately following the introduction of PCV-13, but subsequently returned to pre-vaccination levels. This is reflected in the distribution of NVT lineages, and, to a lesser extent, their accessory gene frequencies. As such, there may be a period during which the population is particularly disrupted by vaccination before returning to a more stable distribution. The persistence and shifting genetic composition of serotype 3 is a concern and warrants further investigation.


Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1.

  • Mohammad Hamidian‎ et al.
  • Microbial genomics‎
  • 2019‎

Resistance to carbapenem and aminoglycoside antibiotics is a critical problem in Acinetobacter baumannii, particularly when genes conferring resistance are acquired by multiply or extensively resistant members of successful globally distributed clonal complexes, such as global clone 1 (GC1) . Here, we investigate the evolution of an expanding clade of lineage 1 of the GC1 complex via repeated acquisition of carbapenem- and aminoglycoside-resistance genes. Lineage 1 arose in the late 1970s and the Tn6168/OCL3 clade arose in the late 1990s from an ancestor that had already acquired resistance to third-generation cephalosporins and fluoroquinolones. Between 2000 and 2002, two distinct subclades have emerged, and they are distinguishable via the presence of an integrated phage genome in subclade 1 and AbaR4 (carrying the oxa23 carbapenem-resistance gene in Tn2006) at a specific chromosomal location in subclade 2. Part or all of the original resistance gene cluster in the chromosomally located AbaR3 has been lost from some isolates, but plasmids carrying alternate resistance genes have been gained. In one group in subclade 2, the chromosomally located AbGRI3, carrying the armA aminoglycoside-resistance gene, has been acquired from a GC2 isolate and incorporated via homologous recombination. ISAba1 entered the common ancestor of this clade as part of the cephalosporin-resistance transposon Tn6168 and has dispersed differently in each subclade. Members of subclade 1 share an ISAba1 in one specific position in the chromosome and in subclade 2 two different ISAba1 locations are shared. Further shared ISAba1 locations distinguish further divisions, potentially providing simple markers for epidemiological studies.


Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria.

  • Aleisha Reimer‎ et al.
  • Microbial genomics‎
  • 2019‎

The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.


Where the plasmids roam: large-scale sequence analysis reveals plasmids with large host ranges.

  • Lauren Elisabeth Brooks‎ et al.
  • Microbial genomics‎
  • 2019‎

Describing the role of plasmids and their contribution to the exchange of genetic material among bacteria is essential for understanding the fields of plasmid epidemiology, microbial ecology, and commercial and synthetic microbiology. Broad-host-range (BHR) plasmids are those that are found not only in a single bacterial species, but in members of different taxonomic groups and are of significant interest to researchers in many fields. We applied a novel approach to computationally identify new BHR plasmids, in which we searched for highly similar cognate plasmids within a comprehensive plasmid database. After identifying 125 plasmid groups with highly similar cognates found in multiple taxa, we closely examined BHR plasmids found in multiple families. The majority of our identified BHR plasmids are found in members of the Enterobacteriaceae and closely related taxa, while three BHR plasmids of potential commercial significance were found in two species of Cyanobacteria. One plasmid with an exceptionally broad host range was found in both Gram-positive and Gram-negative bacterial species. This analysis demonstrates the utility of this method in identifying new BHR plasmids while highlighting unknown ranges of previously documented plasmids.


Wave 2 strains of atypical Vibrio cholerae El Tor caused the 2009-2011 cholera outbreak in Papua New Guinea.

  • Andrew R Greenhill‎ et al.
  • Microbial genomics‎
  • 2019‎

Vibrio cholerae is the causative agent of cholera, a globally important human disease for at least 200 years. In 2009-2011, the first recorded cholera outbreak in Papua New Guinea (PNG) occurred. We conducted genetic and phenotypic characterization of 21 isolates of V. cholerae, with whole-genome sequencing conducted on 2 representative isolates. The PNG outbreak was caused by an atypical El Tor strain harbouring a tandem repeat of the CTX prophage on chromosome II. Whole-genome sequence data, prophage structural analysis and the absence of the SXT integrative conjugative element was indicative that the PNG isolates were most closely related to strains previously isolated in South-East and East Asia with affiliations to global wave 2 strains. This finding suggests that the cholera outbreak in PNG was caused by an exotic (non-endemic) strain of V. cholerae that originated in South-East Asia.


Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model.

  • Sharon Irvine‎ et al.
  • Microbial genomics‎
  • 2019‎

Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.


Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi.

  • Luisa Berná‎ et al.
  • Microbial genomics‎
  • 2018‎

Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi's genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a 'core compartment' and a 'disruptive compartment' which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.


Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli.

  • Kerri M Malone‎ et al.
  • Microbial genomics‎
  • 2018‎

Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.


Taxonogenomics reveal multiple novel genomospecies associated with clinical isolates of Stenotrophomonas maltophilia.

  • Prashant P Patil‎ et al.
  • Microbial genomics‎
  • 2018‎

Stenotrophomonas maltophilia has evolved as one of the leading multidrug-resistant pathogens responsible for a variety of nosocomial infections especially in highly debilitated patients. As information on the genomic and intraspecies diversity of this clinically important pathogen is limited, we sequenced the whole genome of 27 clinical isolates from hospitalized patients. Phylogenomic analysis along with the genomes of type strains suggested that the clinical isolates are distributed over the Stenotrophomonas maltophilia complex (Smc) within the genus Stenotrophomonas. Further genome-based taxonomy coupled with the genomes of type strains of the genus Stenotrophomonas allowed us to identify five cryptic genomospecies, which are associated with the clinical isolates of S. maltophilia and are potentially novel species. These isolates share a very small core genome that implies a high level of genetic diversity within the isolates. Recombination analysis of core genomes revealed that the impact of recombination is more than mutation in the diversification of clinical S. maltophilia isolates. Distribution analysis of well-characterized antibiotic-resistance and efflux pump genes of S. maltophilia across multiple novel genomospecies provided insights into its antibiotic-resistant ability. This study supports the existence of multiple cryptic species within the Smc besides S. maltophilia, which are associated with human infections, and highlights the importance of genome-based approaches to delineate bacterial species. This data will aid in improving clinical diagnosis and for understanding species-specific clinical manifestations of infection due to Stenotrophomonas species.


Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets.

  • Tomohiro Shimada‎ et al.
  • Microbial genomics‎
  • 2015‎

Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in Escherichia coli. In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the E. coli genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the lrp mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the lrp mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.


Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus.

  • Wei Gao‎ et al.
  • Microbial genomics‎
  • 2015‎

We used genomics to study the evolution of meticillin-resistant Staphylococcus aureus (MRSA) during a complex, protracted clinical infection. Preparing closed MRSA genomes from days 0 and 115 allowed us to precisely reconstruct all genetic changes that occurred. Twenty-three MRSA blood cultures were also obtained during treatment, yielding 44 colony morphotypes that varied in size, haemolysis and antibiotic susceptibility. A subset of 15 isolates was sequenced and shown to harbour a total of 37 sequence polymorphisms. Eighty per cent of all mutations occurred from day 45 onwards, which coincided with the appearance of discrete chromosome expansions, and concluded in the day 115 isolate with a 98 kb tandem DNA duplication. In all heterogeneous vancomycin-intermediate Staphylococcus aureus isolates, the chromosomal amplification spanned at least a 20 kb region that notably included mprF, a gene involved in resistance to antimicrobial peptides, and parC, an essential DNA replication gene with an unusual V463 codon insertion. Restoration of the chromosome after serial passage under non-selective growth was accompanied by increased susceptibility to antimicrobial peptide killing and reduced vancomycin resistance, two signature phenotypes that help explain the clinical persistence of this strain. Elevated expression of the V463 parC was deleterious to the cell and reduced colony size, but did not alter ciprofloxacin susceptibility. In this study, we identified large DNA expansions as a clinically relevant mechanism of S. aureus resistance and persistence, demonstrating the extent to which bacterial chromosomes remodel in the face of antibiotic and host immune pressures.


Region-specific diversification of the highly virulent serotype 1 Streptococcus pneumoniae.

  • Jennifer E Cornick‎ et al.
  • Microbial genomics‎
  • 2015‎

Serotype 1 Streptococcus pneumoniae is a leading cause of invasive pneumococcal disease (IPD) worldwide, with the highest burden in developing countries. We report the whole-genome sequencing analysis of 448 serotype 1 isolates from 27 countries worldwide (including 11 in Africa). The global serotype 1 population shows a strong phylogeographic structure at the continental level, and within Africa there is further region-specific structure. Our results demonstrate that region-specific diversification within Africa has been driven by limited cross-region transfer events, genetic recombination and antimicrobial selective pressure. Clonal replacement of the dominant serotype 1 clones circulating within regions is uncommon; however, here we report on the accessory gene content that has contributed to a rare clonal replacement event of ST3081 with ST618 as the dominant cause of IPD in the Gambia.


High-throughput DNA sequencing of the moose rumen from different geographical locations reveals a core ruminal methanogenic archaeal diversity and a differential ciliate protozoal diversity.

  • Suzanne L Ishaq‎ et al.
  • Microbial genomics‎
  • 2015‎

Moose rumen samples from Vermont, Alaska and Norway were investigated for methanogenic archaeal and protozoal density using real-time PCR, and diversity using high-throughput sequencing of the 16S and 18S rRNA genes. Vermont moose showed the highest protozoal and methanogen densities. Alaskan samples had the highest percentages of Methanobrevibacter smithii, followed by the Norwegian samples. One Norwegian sample contained 43 % Methanobrevibacter thaueri, whilst all other samples contained < 10 %. Vermont samples had large percentages of Methanobrevibacter ruminantium, as did two Norwegian samples. Methanosphaera stadtmanae represented one-third of sequences in three samples. Samples were heterogeneous based on gender, geographical location and weight class using analysis of molecular variance (AMOVA). Two Alaskan moose contained >70 % Polyplastron multivesiculatum and one contained >75 % Entodinium spp. Protozoa from Norwegian moose belonged predominantly (>50 %) to the genus Entodinium, especially Entodinium caudatum. Norwegian moose contained a large proportion of sequences (25-97 %) which could not be classified beyond family. Protozoa from Vermont samples were predominantly Eudiplodinium rostratum (>75 %), with up to 7 % Diploplastron affine. Four of the eight Vermont samples also contained 5-12 % Entodinium spp. Samples were heterogeneous based on AMOVA, principal coordinate analysis and UniFrac. This study gives the first insight into the methanogenic archaeal diversity in the moose rumen. The high percentage of rumen archaeal species associated with high starch diets found in Alaskan moose corresponds well to previous data suggesting that they feed on plants high in starch. Similarly, the higher percentage of species related to forage diets in Vermont moose also relates well to their higher intake of fibre.


Shetti, a simple tool to parse, manipulate and search large datasets of sequences.

  • Haitham Sobhy‎
  • Microbial genomics‎
  • 2015‎

Parsing and manipulating long and/or multiple protein or gene sequences can be a challenging process for experimental biologists and microbiologists lacking prior knowledge of bioinformatics and programming. Here we present a simple, easy, user-friendly and versatile tool to parse, manipulate and search within large datasets of long and multiple protein or gene sequences. The Shetti tool can be used to search for a sequence, species, protein/gene or pattern/motif. Moreover, it can also be used to construct a universal consensus or molecular signatures for proteins based on their physical characteristics. Shetti is an efficient and fast tool that can deal with large sets of long sequences efficiently. Shetti parses UniProt Knowledgebase and NCBI GenBank flat files and visualizes them as a table.


Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion.

  • Ann-Katrin Llarena‎ et al.
  • Microbial genomics‎
  • 2016‎

The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni.


Long-range dispersal moved Francisella tularensis into Western Europe from the East.

  • Chinmay Dwibedi‎ et al.
  • Microbial genomics‎
  • 2016‎

For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.


Identification of Klebsiella capsule synthesis loci from whole genome data.

  • Kelly L Wyres‎ et al.
  • Microbial genomics‎
  • 2016‎

Klebsiella pneumoniae is a growing cause of healthcare-associated infections for which multi-drug resistance is a concern. Its polysaccharide capsule is a major virulence determinant and epidemiological marker. However, little is known about capsule epidemiology since serological typing is not widely accessible and many isolates are serologically non-typeable. Molecular typing techniques provide useful insights, but existing methods fail to take full advantage of the information in whole genome sequences. We investigated the diversity of the capsule synthesis loci (K-loci) among 2503 K. pneumoniae genomes. We incorporated analyses of full-length K-locus nucleotide sequences and also clustered protein-encoding sequences to identify, annotate and compare K-locus structures. We propose a standardized nomenclature for K-loci and present a curated reference database. A total of 134 distinct K-loci were identified, including 31 novel types. Comparative analyses indicated 508 unique protein-encoding gene clusters that appear to reassort via homologous recombination. Extensive intra- and inter-locus nucleotide diversity was detected among the wzi and wzc genes, indicating that current molecular typing schemes based on these genes are inadequate. As a solution, we introduce Kaptive, a novel software tool that automates the process of identifying K-loci based on full locus information extracted from whole genome sequences (https://github.com/katholt/Kaptive). This work highlights the extensive diversity of Klebsiella K-loci and the proteins that they encode. The nomenclature, reference database and novel typing method presented here will become essential resources for genomic surveillance and epidemiological investigations of this pathogen.


Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward.

  • Mark B Schultz‎ et al.
  • Microbial genomics‎
  • 2016‎

We recently reported a dramatic increase in the prevalence of carbapenem-resistant Acinetobacter baumannii infections in the intensive care unit (ICU) of a Vietnamese hospital. This upsurge was associated with a specific oxa23-positive clone that was identified by multilocus VNTR analysis. Here, we used whole-genome sequence analysis to dissect the emergence of carbapenem-resistant A. baumannii causing ventilator-associated pneumonia (VAP) in the ICU during 2009-2012. To provide historical context and distinguish microevolution from strain introduction, we compared these genomes with those of A. baumannii asymptomatic carriage and VAP isolates from this same ICU collected during 2003-2007. We identified diverse lineages co-circulating over many years. Carbapenem resistance was associated with the presence of oxa23, oxa40, oxa58 and ndm1 genes in multiple lineages. The majority of resistant isolates were oxa23-positive global clone GC2; fine-scale phylogenomic analysis revealed five distinct GC2 sublineages within the ICU that had evolved locally via independent chromosomal insertions of oxa23 transposons. The increase in infections caused by carbapenem-resistant A. baumannii was associated with transposon-mediated transmission of a carbapenemase gene, rather than clonal expansion or spread of a carbapenemase-harbouring plasmid. Additionally, we found evidence of homologous recombination creating diversity within the local GC2 population, including several events resulting in replacement of the capsule locus. We identified likely donors of the imported capsule locus sequences amongst the A. baumannii isolated on the same ward, suggesting that diversification was largely facilitated via reassortment and sharing of genetic material within the localized A. baumannii population.


Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic.

  • Dorota M Jamrozy‎ et al.
  • Microbial genomics‎
  • 2016‎

Staphylococcus aureus USA300 represents the dominant community-associated methicillin-resistant S. aureus lineage in the USA, where it is a major cause of skin and soft tissue infections. Previous comparative genomic studies have described the population structure and evolution of USA300 based on geographically restricted isolate collections. Here, we investigated the USA300 population by sequencing genomes of a geographically distributed panel of 191 clinical S. aureus isolates belonging to clonal complex 8 (CC8), derived from the Tigecycline Evaluation and Surveillance Trial program. Isolates were collected at 12 healthcare centres across nine USA states in 2004, 2009 or 2010. Reconstruction of evolutionary relationships revealed that CC8 was dominated by USA300 isolates (154/191, 81 %), which were heterogeneous and demonstrated limited phylogeographic clustering. Analysis of the USA300 core genomes revealed an increase in median pairwise SNP distance from 62 to 98 between 2004 and 2010, with a stable pattern of above average dN/dS ratios. The phylogeny of the USA300 population indicated that early diversification events led to the formation of nested clades, which arose through cumulative acquisition of predominantly non-synonymous SNPs in various coding sequences. The accessory genome of USA300 was largely homogenous and consisted of elements previously associated with this lineage. We observed an emergence of SCCmec negative and ACME negative USA300 isolates amongst more recent samples, and an increase in the prevalence of ϕSa5 prophage. Together, the analysed S. aureus USA300 collection revealed an evolving pan-genome through increased core genome heterogeneity and temporal variation in the frequency of certain accessory elements.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: