Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 511 papers

Postprandial Plasma Glucagon Kinetics in Type 2 Diabetes Mellitus: Comparison of Immunoassay and Mass Spectrometry.

  • Takehiro Katahira‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Accurate glucagon level measurements are necessary for investigation of mechanisms for postprandial hyperglycemia in type 2 diabetes.


Prolonged Exposure to Insulin Inactivates Akt and Erk1/2 and Increases Pancreatic Islet and INS1E β-Cell Apoptosis.

  • Nadia Rachdaoui‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Chronic hyperinsulinemia, in vivo, increases the resistance of peripheral tissues to insulin by desensitizing insulin signaling. Insulin, in a heterologous manner, can also cause IGF-1 resistance. The aim of the current study was to investigate whether insulin-mediated insulin and IGF-1 resistance develops in pancreatic β-cells and whether this resistance results in β-cell decompensation. Chronic exposure of rat islets or INS1E β-cells to increasing concentrations of insulin decreased AktS473 phosphorylation in response to subsequent acute stimulation with 10 nM insulin or IGF-1. Prolonged exposure to high insulin levels not only inhibited AktS473 phosphorylation, but it also resulted in a significant inhibition of the phosphorylation of P70S6 kinase and Erk1/2 phosphorylation in response to the acute stimulation by glucose, insulin, or IGF-1. Decreased activation of Akt, P70S6K, and Erk1/2 was associated with decreased insulin receptor substrate 2 tyrosine phosphorylation and insulin receptor β-subunit abundance; neither IGF receptor β-subunit content nor its phosphorylation were affected. These signaling impairments were associated with decreased SERCA2 expression, perturbed plasma membrane calcium current and intracellular calcium handling, increased endoplasmic reticulum stress markers such as eIF2α S51 phosphorylation and Bip (GRP78) expression, and increased islet and β-cell apoptosis. We demonstrate that prolonged exposure to high insulin levels induces not only insulin resistance, but in a heterologous manner causes resistance to IGF-1 in rat islets and insulinoma cells resulting in decreased cell survival. These findings suggest the possibility that chronic exposure to hyperinsulinemia may negatively affect β-cell mass by increasing β-cell apoptosis.


IGFBP-3 Induced by Ribotoxic Stress Traffics From the Endoplasmic Reticulum to the Nucleus in Mammary Epithelial Cells.

  • Allyson Agostini-Dreyer‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

IGF-binding protein (IGFBP)-3 is a multifunctional protein that can exert IGF-independent effects on apoptosis. Anisomycin (ANS) is a potent inducer of IGFBP-3 production in bovine mammary epithelial cells (MECs), and knockdown of IGFBP-3 attenuates ANS-induced apoptosis. IGFBP-3 is present in the nucleus and the conditioned media in response to ANS. The goal of this study was to determine whether ribotoxic stress induced by ANS or a second ribotoxin, deoxynivalenol (DON), specifically regulates transport of IGFBP-3 to the nucleus and to determine the pathway by which it traffics. In ribotoxin-treated cells, both endogenous IGFBP-3 and transfected IGFBP-3 translocated to the nucleus. Inhibition of the nuclear transport protein importin-β with importazole reduced ribotoxin-induced nuclear IGFBP-3. Immunoprecipitation studies showed that ANS induced the association of IGFBP-3 and importin-β, indicating that ribotoxins specifically induce nuclear translocation via an importin-β‒dependent mechanism. To determine whether secretion of IGFBP-3 is required for nuclear localization, cells were treated with Pitstop 2 or brefeldin A to inhibit clathrin-mediated endocytosis or overall protein secretion, respectively. Neither inhibitor affected nuclear localization of IGFBP-3. Although the IGFBP-3 present in both the nucleus and conditioned media was glycosylated, secreted IGFBP-3 exhibited a higher molecular weight. Deglycosylation experiments with endoglycosidase Hf and PNGase indicated that secreted IGFBP-3 completed transit through the Golgi apparatus, whereas intracellular IGFBP-3 exited from the endoplasmic reticulum before transit through the Golgi. In summary, ANS and DON specifically induced nuclear localization of nonsecreted IGFBP-3 via an importin-β‒mediated event, which may play a role in their ability to induce apoptosis in MECs.


Sex-Specific Gene Expression in the Mouse Nucleus Accumbens Before and After Cocaine Exposure.

  • Taylor P LaRese‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

The nucleus accumbens plays a major role in the response of mammals to cocaine. In animal models and human studies, the addictive effects of cocaine and relapse probability have been shown to be greater in females. Sex-specific differential expression of key transcripts at baseline and after prolonged withdrawal could underlie these differences. To distinguish between these possibilities, gene expression was analyzed in four groups of mice (cycling females, ovariectomized females treated with estradiol or placebo, and males) 28 days after they had received seven daily injections of saline or cocaine. As expected, sensitization to the locomotor effects of cocaine was most pronounced in the ovariectomized mice receiving estradiol, was greater in cycling females than in males, and failed to occur in ovariectomized/placebo mice. After the 28-day withdrawal period, RNA prepared from the nucleus accumbens of the individual cocaine- or saline-injected mice was subjected to RNA sequencing analysis. Baseline expression of 3% of the nucleus accumbens transcripts differed in the cycling female mice compared with the male mice. Expression of a similar number of transcripts was altered by ovariectomy or was responsive to estradiol treatment. Nucleus accumbens transcripts differentially expressed in cycling female mice withdrawn from cocaine exhibited substantial overlap with those differentially expressed in cocaine-withdrawn male mice. A small set of transcripts were similarly affected by cocaine in the placebo- or estradiol-treated ovariectomized mice. Sex and hormonal status have profound effects on RNA expression in the nucleus accumbens of naive mice. Prolonged withdrawal from cocaine alters the expression of a much smaller number of common and sex hormone-specific transcripts.


Immune Checkpoint Blockade Anti-PD-L1 as a Trigger for Autoimmune Polyendocrine Syndrome.

  • Giulia Lanzolla‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

The programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) pathway is a key regulator in T-cell activation and tolerance, limiting effector T-cell function in peripheral tissues. Atezolizumab, an anti-PD-L1 monoclonal antibody, is approved for treatment of some types of advanced cancer. Its main treatment-related adverse events are immune related, such as thyroid dysfunction and hypophysitis. Autoimmune endocrinopathy can occur as isolated manifestations; only a few cases of autoimmune polyendocrine syndromes have been reported thus far.


Mitochondrial Protein Turnover Is Critical for Granulosa Cell Proliferation and Differentiation in Antral Follicles.

  • S A Masudul Hoque‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Granulosa cell (GC) proliferation is essential for follicular development. FSH is a key factor in GC proliferation, and a continuous supply of high levels of ATP is necessary for cell proliferation. However, genes encoding proteins of the glycolytic pathways are poorly expressed in GCs. Therefore, we hypothesized that mitochondrial gene expression and protein synthesis play a primary role in ATP production during GC proliferation. To test this hypothesis, we performed an in vivo study of GCs collected from 23-day-old mice ovaries with or without equine chorionic gonadotropin (eCG) priming. It was observed that mitochondrial activity with membrane potential, expression of protein-coding genes (Nd1-6, Cytb, Atpase6,8) and transcription-related genes (Polrmt, Tfam, Tfb2m), copy number of mitochondrial (mt-)DNA, and protein synthesis were increased in GCs after 24 hours of eCG injection and mostly maintained elevated up to 48 hours. Therefore, we performed in vitro culture of GCs in DMEM medium supplemented with FSH, testosterone, and serum and containing different glucose concentrations with or without d-chloramphenicol (CRP) for 24 hours. GC proliferation and ATP production were observed to be independent of glucose concentration. Furthermore, FSH-induced mitochondrial activity with membrane potential, ATP content, BrdU-incorporated cell proliferation, intensity of mt-ND1 and mt-ND6 proteins, and expressions of marker genes for proliferation and differentiation were significantly decreased by CRP treatment. These results revealed the crucial role of mitochondria in the supply of ATP and the necessity of mitochondrial gene expression and protein synthesis in not only the proliferation but also the differentiation of GCs during follicular development.


Cardiovascular Risk Factors and Dehydroepiandrosterone Sulfate Among Latinos in the Boston Puerto Rican Health Study.

  • Monik C Jiménez‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Low blood dehydroepiandrosterone sulfate (DHEAS) levels have strong positive associations with stroke and coronary heart disease. However, it is unclear whether DHEAS is independently associated with cardiovascular risk factors. Therefore, we examined the association between cardiovascular risk factors and DHEAS concentration among a high-risk population of Latinos (Puerto Ricans aged 45 to 75 years at baseline) in a cross-sectional analysis of the Boston Puerto Rican Health Study. Of eligible participants, 72% completed baseline interviews and provided blood samples. Complete data were available for 1355 participants. Associations between cardiovascular risk factors (age, sex, total cholesterol, high-density lipid cholesterol, triglycerides, and glucose) and log-transformed DHEAS (μg/dL) were assessed. In robust multivariable regression analyses, DHEAS was significantly inversely associated with age (β = -12.4; 95% CI: -15.2, -9.7; per 5 years), being female (vs. male) (β = -46; 95% CI: -55.3, -36.6), and plasma triglyceride concentration (β = -0.2; 95% CI: -0.3, -0.1; per 10 mg/dL) and was positively associated with total cholesterol and plasma glucose levels (β = 1.8; 95% CI: 0.6, 3 and β = 0.2; 95% CI: 0.04, 0.3, respectively, per 10 mg/dL) after adjustment for smoking, alcohol, and physical activity and for postmenopausal hormone use in women. Estimates were unchanged after adjustment for measures of chronic disease and inflammation. Women exhibited a stronger age-related decline in DHEAS and a positive association with glucose in contrast to findings among men (P interaction < 0.05). In conclusion, in this large study of Latinos with a heavy cardiovascular risk factor burden, we observed significant associations between cardiovascular disease (CVD) risk factors and DHEAS, with variations by sex. These findings improve our understanding of the role DHEAS may play in CVD etiology.


Relationship Between Vitamin D Status From Childhood to Early Adulthood With Body Composition in Young Australian Adults.

  • Kun Zhu‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Vitamin D plays a role in the differentiation and metabolism of skeletal muscle and, possibly, adipose tissue; however, the relationship between vitamin D status during growth and body composition in early adulthood is unclear.


Influence of Hashimoto Thyroiditis on the Development of Thyroid Nodules and Cancer in Children and Adolescents.

  • Giorgio Radetti‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

It is unclear whether patients with Hashimoto thyroiditis (HT) are predisposed to develop thyroid nodules and/or thyroid cancer. The objective of our study was therefore to assess the prevalence of thyroid nodules and/or cancer in patients with HT and to look for possible prognostic factors. A retrospective survey of 904 children/adolescents with HT (709 females, 195 males) regularly followed in nine Italian centers of pediatric endocrinology was performed. Median period of follow-up was 4.5 years (1.2 to 12.8 years). We evaluated free T4, TSH, thyroid peroxidase antibody (TPOAb), thyroglobulin antibodies, and thyroid ultrasound yearly. One hundred seventy-four nodules were detected, with an annual incidence rate of 3.5%. Ten nodules were malignant (8 papillary and 2 papillary follicular variant), giving a 5.7% prevalence of cancer among patients with nodules. The severity of hypoechogenity at ultrasound, TPOAb, and free T4 serum concentrations were predictive for the appearance of new nodules. Furthermore, a positive correlation was observed between TPOAb titer and the development of thyroid cancer. In conclusion, HT seems to influence the development of thyroid nodules, but not cancer in children and adolescents.


Mechanisms of Osteoblastic Bone Metastasis in Prostate Cancer: Role of Prostatic Acid Phosphatase.

  • Mariana Quiroz-Munoz‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Prostate cancer (PCa) preferentially metastasizes to bone, leading to complications including severe pain, fractures, spinal cord compression, bone marrow suppression, and a mortality of ∼70%. In spite of recent advances in chemo-, hormonal, and radiation therapies, bone-metastatic, castrate-resistant PCa is incurable. PCa is somewhat unique among the solid tumors in its tendency to produce osteoblastic lesions composed of hypermineralized bone with multiple layers of poorly organized type I collagen fibrils that have reduced mechanical strength. Many of the signaling pathways that control normal bone homeostasis are at play in pathologic PCa bone metastases, including the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin system. A number of PCa-derived soluble factors have been shown to induce the dysfunctional osteoblastic phenotype. However, therapies directed at these osteoblastic-stimulating proteins have yielded disappointing clinical results to date. One of the soluble factors expressed by PCa cells, particularly in bone metastases, is prostatic acid phosphatase (PAP). Human PAP is a prostate epithelium-specific secretory protein that was the first tumor marker ever described. Biologically, PAP exhibits both phosphatase activity and ecto-5'-nucleotidase activity, generating extracellular phosphate and adenosine as the final products. Accumulating evidence indicates that PAP plays a causal role in the osteoblastic phenotype and aberrant bone mineralization seen in bone-metastatic, castrate-resistant PCa. Targeting PAP may represent a therapeutic approach to improve morbidity and mortality from PCa osteoblastic bone metastases.


Assay-Specific Spurious ACTH Results Lead to Misdiagnosis, Unnecessary Testing, and Surgical Misadventure-A Case Series.

  • Loren Wissner Greene‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

The proper clinical evaluation of pituitary and adrenal disorders depends on the accurate measurement of plasma ACTH. The modern two-site sandwich ACTH immunoassay is a great improvement compared with older methods but still has the potential for interferences such as heterophile antibodies and pro-opiomelanocortin (POMC) and ACTH fragments. We report the cases of five patients in whom the diagnosis or differential diagnosis of Cushing syndrome was confounded by erroneously elevated results from the Siemens ACTH Immulite assay [ACTH(Immulite)] that were resolved using the Roche Cobas or Tosoh AIA [ACTH(Cobas) and ACTH(AIA), respectively]. In one case, falsely elevated ACTH(Immulite) results owing to interfering antibodies resulted in several invasive differential diagnostic procedures (including inferior petrosal sinus sampling), MRI, and unnecessary pituitary surgery. ACTH(Cobas) measurements were normal, and further studies excluded the diagnosis of Cushing syndrome. In three cases, either Cushing disease or occult ectopic ACTH were suspected owing to elevated ACTH(Immulite) results. However, adrenal (ACTH-independent) Cushing syndrome was established using ACTH(AIA) or ACTH(Cobas) and proved surgically. In one case, ectopic ACTH was suspected owing to elevated ACTH(Immulite) results; however, the ACTH(Cobas) findings led to the diagnosis of alcohol-induced hypercortisolism that resolved with abstinence. We have concluded that ACTH(Immulite) results can be falsely increased and alternate ACTH assays should be used in the diagnosis or differential diagnosis of clinical disorders of the hypothalamic-pituitary-adrenal axis.


Central Hypothyroidism and Novel Clinical Phenotypes in Hemizygous Truncation of TBL1X.

  • Marta García‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

Transducin β-like 1 X-linked (TBL1X) gene encodes a subunit of the nuclear corepressor-silencing mediator for retinoid and thyroid hormone receptor complex (NCoR-SMRT) involved in repression of thyroid hormone action in the pituitary and hypothalamus. TBL1X defects were recently associated with central hypothyroidism and hearing loss. The current study aims to describe the clinical and genetic characterization of a male diagnosed with central hypothyroidism through thyroid hormone profiling, TRH test, brain MRI, audiometry, and psychological evaluation. Next-generation sequencing of known genes involved in thyroid disorders was implemented. The 6-year-old boy was diagnosed with central hypothyroidism [free T4: 10.42 pmol/L (normal: 12 to 22 pmol/L); TSH: 1.57 mIU/L (normal: 0.7 to 5.7 mIU/L)], with a mildly reduced TSH response to TRH. He was further diagnosed with attention-deficit/hyperactivity disorder (ADHD) at 7 years, alternating episodes of encopresis and constipation, and frequent headaches. MRI showed a normal pituitary but detected a Chiari malformation type I (CMI). At 10 years, audiometry identified poor hearing threshold at high frequencies. Sequencing revealed a nonsense hemizygous mutation in TBL1X [c.1015C>T; p.(Arg339Ter)] largely truncating its WD-40 repeat domain involved in nuclear protein-protein interactions. In conclusion, to our knowledge, we identified the first severely truncating TBL1X mutation in a patient with central hypothyroidism, hypoacusia, and novel clinical features like ADHD, gastrointestinal dysmotility, and CMI. Given the relevance of TBL1X and NCoR-SMRT for the regulation of transcriptional programs at different tissues (pituitary, cochlea, brain, fossa posterior, and cerebellum), severe mutations in TBL1X may lead to a distinct syndrome with a phenotypic spectrum wider than previously reported.


An Increase in Chromogranin A-Positive, Hormone-Negative Endocrine Cells in Pancreas in Cystic Fibrosis.

  • Megan Cory‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

We sought to establish whether an increase in chromogranin A-positive, hormone-negative (CPHN) endocrine cells occurs in the pancreas of patients with cystic fibrosis (CF), as potential evidence of neogenesis. Pancreata were obtained at autopsy from nondiabetic patients with CF (n = 12) and age-matched nondiabetic control subject (CS) individuals without CF (n = 12). In addition, pancreas from three diabetic patients with CF was obtained. Pancreas sections were stained for chromogranin A, insulin, and a cocktail of glucagon, somatostatin, pancreatic polypeptide, and ghrelin and evaluated for the frequency of CPHN cells. There was a higher frequency of CPHN cells in islets of the patients with CF compared with the CS group. Moreover, CPHN cells occurring as single cells or clusters scattered in the exocrine pancreas were also more frequent in patients with CF. The increased frequency of CPHN cells in pancreas of patients with CF may indicate an attempt at endocrine cell regeneration.


Notch-1 Signaling Activation and Progesterone Receptor Expression in Ectopic Lesions of Women With Endometriosis.

  • Dustin M Brown‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

Progesterone (P) resistance is a hallmark of endometriosis, but the underlying mechanism(s) for loss of P sensitivity leading to lesion establishment remains poorly understood.


Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation.

  • Charlotte D LaPlante‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

Hormones and endocrine-disrupting chemicals are generally thought to have permanent "organizational" effects when exposures occur during development but not adulthood. Yet, an increasing number of studies have shown that pregnant females are disrupted by endocrine-disrupting chemical exposures, with some effects that are permanent. Here, we examined the long-term effects of exposure to oxybenzone, an estrogenic chemical found in sunscreen and personal care products, on the morphology of the mammary gland in mice exposed during pregnancy and lactation. Female mice were exposed to vehicle or 30, 212, or 3000 µg oxybenzone/kg/d, from pregnancy day 0 until weaning. A nulliparous group, receiving vehicle treatment, was also evaluated. Mammary glands were collected 5 weeks after involution for whole-mount, histological, immunohistochemical, and molecular analyses. Exposure to 3000 µg oxybenzone/kg/d induced permanent changes to ductal density that was significantly different from both the nulliparous and vehicle groups. The two highest doses of oxybenzone similarly induced an intermediate phenotype for expression of progesterone receptor. A monotonic, dose-dependent increase in cell proliferation was also observed in the oxybenzone-treated females, becoming statistically significant at the highest dose. Finally, oxybenzone exposure induced an intermediate phenotype for Esr1 expression in all oxybenzone-treated groups. These data suggest that oxybenzone, at doses relevant to human exposures, produces long-lasting alterations to mammary gland morphology and function. Further studies are needed to determine if exposure to this chemical during pregnancy and lactation will interfere with the known protection that pregnancy provides against breast cancer.


Oral Glucose Tolerance Test Glucose Peak Time Is Most Predictive of Prediabetes and Hepatic Steatosis in Obese Girls.

  • Melanie Cree-Green‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

Obese adolescent girls are at increased risk for type 2 diabetes, characterized by defects in insulin secretion and action. We sought to determine if later glucose peak timing (>30 minutes), 1-hour glucose >155 mg/dl, or monophasic pattern of glucose excursion during an oral glucose tolerance test (OGTT) reflect a worse cardiometabolic risk profile. Post-pubertal overweight/obese adolescent girls without diabetes were studied (N = 88; age, 15.2 ± 0.2 years; body mass index percentile, 97.7 ± 0.5). All participants completed an OGTT and body composition measures. Thirty-two girls had a four-phase hyperinsulinemic euglycemic clamp with isotope tracers, vascular imaging, and muscle mitochondrial assessments. Participants were categorized by glucose peak timing (≤30 min = early; >30 min = late), 1-hour glucose concentration (±155 mg/dL) and glucose pattern (monophasic, biphasic). Girls with a late (N = 54) vs earlier peak (n = 34) timing had higher peak glucose (P < 0.001) and insulin (P = 0.023), HbA1c (P = 0.021); prevalence of hepatic steatosis (62% vs 26%; P = 0.003) and lower oral disposition index (P < 0.001) and glucagon-like peptide-1 response (P = 0.037). When classified by 1-hour glucose, group differences were similar to peak timing, but minimal when classified by glucose pattern. In the >155 mg/dL group only, peripheral insulin sensitivity and fasting free fatty acids were worse. A later glucose peak or >155 mg/dL 1-hour glucose predicts metabolic disease risk in obese adolescent girls. This may defect incretin effects and first phase insulin response, and muscle and adipose insulin resistance.


PAPPA2 as a Therapeutic Modulator of IGF-I Bioavailability: in Vivo and in Vitro Evidence.

  • Melissa Andrew‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

Pregnancy-associated plasma protein A2 (PAPPA2) is a protease that cleaves IGF-binding protein (IGFBP)-3 and IGFBP-5, liberating free IGF-I. Five patients from two families with genetic mutations in PAPPA2 presented with growth retardation, elevated total IGF-I, and IGFBP-3 but decreased free IGF-I.


Forkhead Box Transcription Factors of the FOXA Class Are Required for Basal Transcription of Angiotensin-Converting Enzyme 2.

  • Kim Brint Pedersen‎ et al.
  • Journal of the Endocrine Society‎
  • 2017‎

Angiotensin-converting enzyme 2 (ACE2) has protective effects on a wide range of morbidities associated with elevated angiotensin-II signaling. Most tissues, including pancreatic islets, express ACE2 mainly from the proximal promoter region. We previously found that hepatocyte nuclear factors 1α and 1β stimulate ACE2 expression from three highly conserved hepatocyte nuclear factor 1 binding motifs in the proximal promoter region. We hypothesized that other highly conserved motifs would also affect ACE2 expression. By systematic mutation of conserved elements, we identified five regions affecting ACE2 expression, of which two regions bound transcriptional activators. One of these is a functional FOXA binding motif. We further identified the main protein binding the FOXA motif in 832/13 insulinoma cells as well as in mouse pancreatic islets as FOXA2.


Human Relaxin Receptor Is Fully Functional in Humanized Mice and Is Activated by Small Molecule Agonist ML290.

  • Elena M Kaftanovskaya‎ et al.
  • Journal of the Endocrine Society‎
  • 2017‎

Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1. The lead compound ML290 demonstrated preferred absorption, distribution, metabolism, and excretion profiles, is easy to synthesize, and has high stability in vivo. However, ML290 does not activate rodent RXFP1s and therefore cannot be tested in common preclinical animal models. Here we describe the production and analysis of a mouse transgenic model, a knock-out/knock-in of the human RXFP1 (hRXFP1) complementary DNA into the mouse Rxfp1 (mRxfp1) gene. Insertion of the vector into the mRxfp1 locus caused disruption of mRxfp1 and expression of hRXFP1. The transcriptional expression pattern of the hRXFP1 allele was similar to mRxfp1. Female mice homozygous for hRXFP1 showed relaxation of the pubic symphysis at parturition and normal development of mammary nipples and vaginal epithelium, indicating full complementation of mRxfp1 gene ablation. Intravenous injection of relaxin led to an increase in heart rate in humanized and wild-type females but not in Rxfp1-deficient mice, whereas ML290 increased heart rate in humanized but not wild-type animals, suggesting specific target engagement by ML290. Moreover, intraperitoneal injection of ML290 caused a decrease in blood osmolality. Taken together, our data show humanized RXFP1 mice can be used for testing relaxin receptor modulators in various preclinical studies.


High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats.

  • Katrina M Volk‎ et al.
  • Journal of the Endocrine Society‎
  • 2017‎

Diet-induced obesity has been associated with various metabolic and reproductive disorders, including polycystic ovary syndrome. However, the mechanisms by which obesity influences the reproductive system are still not fully known. Studies have suggested that impairments in hormone signaling are associated with the development of symptoms such as acyclicity and ovarian cysts. However, these studies have often failed to address how these hormonal changes arise and how they might contribute to the progression of reproductive diseases. In the present study, we used a high-fat, high-sugar (HFHS) diet to induce obesity in a female rodent model to determine the changes in critical reproductive hormones that might contribute to the development of irregular estrous cycling and reproductive cycle termination. The HFHS animals exhibited impaired estradiol, progesterone (P4), and luteinizing hormone (LH) surges before ovulation. The HFHS diet also resulted in altered basal levels of testosterone (T) and LH. Furthermore, alterations in the basal P4/T ratio correlated strongly with ovarian cyst formation in HFHS rats. Thus, this model provides a method to assess the underlying etiology of obesity-related reproductive dysfunction and to examine an acyclic reproductive phenotype as it develops.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: