Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 453 papers

Genetic variants of APOC3 promoter and HLA-B genes in an HIV infected cohort in northern South Africa: a pilot study.

  • Tracy Masebe‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Metabolic disorders and hypersensitivities affect tolerability and impact adherence to highly active antiretroviral therapy (HAART). The aim of this study was to determine the prevalence of C-482T/T-455C variants in the Apolipoprotein C3 (APOC3) promoter gene and Human leukocyte antigen (HLA)-B*57:01, known to impact lipid metabolic disorders and hypersensitivity respectively; and to correlate genotypes with gender, CD4+ cell count and viral load in an HIV infected cohort in northern South Africa. Frequencies of C-482 and T-455 polymorphisms in APOC3 were determined by restriction fragment length polymorphism analysis. Allele determination for HLA-B was performed with Assign SBT software in an HLA library. Analysis of APOC3 C-482 site revealed a prevalence of 196/199 (98.5%) for CC, 1/199 (0.5%) for CT and 2/199 (1.0%) for TT genotype (p = 0.000 with 1° of freedom; χ2 = 126.551). For the T-455 site, prevalences were: 69/199 (35%) for TT and 130/199 (65%) for the CC genotype (p = 0.000 with 1° of freedom; χ2 = 199). There was no association between gender and the presence of -482 (p = 1; χ2 = 0.00001) or -455 genotypes (p = 0.1628; χ2 = 1.9842). There was no significant difference in the increase in CD4+ cell count irrespective of genotypes. Significant increases in CD4+ cell count were observed in males and females considering the -455C genotype, but not in males for the -455T genotype. Viral load decreases were significant with the -455C and -482C genotypes irrespective of gender. HLA-B*57:01 was not identified in the study cohort. The apparently high prevalence of APOC3 T-455CC genotype needs confirmation with a larger samples size and triglyceride measurements to support screening of patients to pre-empt HAART associated lipid disorders.


The Changes in Canine Parvovirus Variants over the Years.

  • Xiangqi Hao‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Canine parvovirus (CPV-2) is one of the most important pathogens in dogs, and despite the continual development of vaccines against CPV-2, CPV-2 is still circulating in the canine population. The CPV-2a/2b/2c variant has replaced the original CPV-2 virus and seems to exhibit accelerated transmission. Although CPV-2 infection has been frequently reported, no studies have summarized information of CPV-2 variants currently circulating worldwide. To track the evolution of CPV-2, we downloaded and analyzed all VP2 sequences from the NCBI database (from 1978 to 2022). We found that CPV-2c shows a tendency to replace CPV-2a as the new dominant variant in Asia, South America, North America and Africa. Additionally, CPV-2c, which is prevalent in most regions of Asia, carries two special mutations in VP2, A5G and Q370R, and has become a dominant mutation with spillover already occurring. In conclusion, this summary of the types of global epidemic variants provides new insight into the evolution of CPV-2 and raises awareness for blocking the spread of this virus. The spread of Asian-derived CPV-2c urgently needs to be further under surveillance.


Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics.

  • Marcelo de Bello Cioffi‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.


Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms.

  • Jasleen K Sodhi‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

In some cases, the formation of reactive species from the metabolism of xenobiotics has been linked to toxicity and therefore it is imperative to detect potential bioactivation for candidate drugs during drug discovery. Reactive species can covalently bind to trapping agents in in vitro incubations of compound with human liver microsomes (HLM) fortified with β-nicotinamide adenine dinucleotide phosphate (NADPH), resulting in a stable conjugate of trapping agent and reactive species, thereby facilitating analytical detection and providing evidence of short-lived reactive metabolites. Since reactive metabolites are typically generated by cytochrome P450 (CYP) oxidation, it is important to ensure high concentrations of trapping agents are not inhibiting the activities of CYP isoforms. Here we assessed the inhibitory properties of fourteen trapping agents against the major human CYP isoforms (CYP1A2, 2C9, 2C19, 2D6 and 3A). Based on our findings, eleven trapping agents displayed inhibition, three of which had IC50 values less than 1 mM (2-mercaptoethanol, N-methylmaleimide and N-ethylmaleimide (NEM)). Three trapping agents (dimedone, N-acetyl-lysine and arsenite) did not inhibit CYP isoforms at concentrations tested. To illustrate effects of CYP inhibition by trapping agents on reactive intermediate trapping, an example drug (ticlopidine) and trapping agent (NEM) were chosen for further studies. For the same amount of ticlopidine (1 μM), increasing concentrations of the trapping agent NEM (0.007-40 mM) resulted in a bell-shaped response curve of NEM-trapped ticlopidine S-oxide (TSO-NEM), due to CYP inhibition by NEM. Thus, trapping studies should be designed to include several concentrations of trapping agent to ensure optimal trapping of reactive metabolites.


Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms.

  • Antonella Romano‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1β, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1β isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1β expression.


Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

  • Jing Ren‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.


Lysophosphatidic Acid Mediates Imiquimod-Induced Psoriasis-like Symptoms by Promoting Keratinocyte Proliferation through LPAR1/ROCK2/PI3K/AKT Signaling Pathway.

  • Donghee Kim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.


Antiviral Activity of Quercetin Hydrate against Zika Virus.

  • Marielena Vogel Saivish‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.


Repeated Intravaginal Inoculation of Zika Virus Protects Cynomolgus Monkeys from Subcutaneous Superchallenge.

  • Maya Shofa‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Zika virus (ZIKV) outbreaks in Central and South America caused severe public health problems in 2015 and 2016. These outbreaks were finally contained through several methods, including mosquito control using insecticides and repellents. Additionally, the development of herd immunity in these countries might have contributed to containing the epidemic. While ZIKV is mainly transmitted by mosquito bites and mucosal transmission via bodily fluids, including the semen of infected individuals, has also been reported. We evaluated the effect of mucosal ZIKV infection on continuous subcutaneous challenges in a cynomolgus monkey model. Repeated intravaginal inoculations of ZIKV did not induce detectable viremia or clinical symptoms, and all animals developed a potent neutralizing antibody, protecting animals from the subsequent subcutaneous superchallenge. These results suggest that viral replication at mucosal sites can induce protective immunity without causing systemic viremia or symptoms.


Bis(Benzofuran-1,3-N,N-heterocycle)s as Symmetric and Synthetic Drug Leads against Yellow Fever Virus.

  • Nitesh K Gupta‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The yellow fever virus (YFV) is an emerging RNA virus and has caused large outbreaks in Africa and Central and South America. The virus is often transmitted through infected mosquitoes and spreads from area to area because of international travel. Being an acute viral hemorrhagic disease, yellow fever can be prevented by an effective, safe, and reliable vaccine, but not be eliminated. Currently, there is no antiviral drug available for its cure. Thus, two series of novel bis(benzofuran−1,3-imidazolidin-4-one)s and bis(benzofuran−1,3-benzimidazole)s were designed and synthesized for the development of anti-YFV lead candidates. Among 23 new bis-conjugated compounds, 4 of them inhibited YFV strain 17D (Stamaril) on Huh-7 cells in the cytopathic effect reduction assays. These conjugates exhibited the most compelling efficacy and selectivity with an EC50 of <3.54 μM and SI of >15.3. The results are valuable for the development of novel antiviral drug leads against emerging diseases.


Resistance to Spot Blotch in Two Mapping Populations of Common Wheat Is Controlled by Multiple QTL of Minor Effects.

  • Pawan Kumar Singh‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Spot blotch (SB) is an important fungal disease of wheat in South Asia and South America. Host resistance is regarded as an economical and environmentally friendly approach of controlling SB, and the inheritance of resistance is mostly quantitative. In order to gain a better understanding on the SB resistance mechanism in CIMMYT germplasm, two bi-parental mapping populations were generated, both comprising 232 F2:7 progenies. Elite CIMMYT breeding lines, BARTAI and WUYA, were used as resistant parents, whereas CIANO T79 was used as susceptible parent in both populations. The two populations were evaluated for field SB resistance at CIMMYT's Agua Fria station for three consecutive years, from the 2012⁻2013 to 2014⁻2015 cropping seasons. Phenological traits like plant height (PH) and days to heading (DH) were also determined. Genotyping was performed using the DArTSeq genotyping-by-sequencing (GBS) platform, and a few D-genome specific SNPs and those for phenological traits were integrated for analysis. The most prominent quantitative trait locus (QTL) in both populations was found on chromosome 5AL at the Vrn-A1 locus, explaining phenotypic variations of 7⁻27%. Minor QTL were found on chromosomes 1B, 3A, 3B, 4B, 4D, 5B and 6D in BARTAI and on chromosomes 1B, 2A, 2D and 4B in WUYA, whereas minor QTL contributed by CIANO T79 were identified on chromosome 1B, 1D, 3A, 4B and 7A. In summary, resistance to SB in the two mapping populations was controlled by multiple minor QTL, with strong influence from Vrn-A1.


Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa.

  • Dumitrana Iordache‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

CRISPR-Cas is an adaptive immunity system of prokaryotes, composed of CRISPR arrays and the associated proteins. The successive addition of spacer sequences in the CRISPR array has made the system a valuable molecular marker, with multiple applications. Due to the high degree of polymorphism of the CRISPR loci, their comparison in bacteria from various sources may provide insights into the evolution and spread of the CRISPR-Cas systems. The aim of this study was to establish a correlation between the enterobacterial CRISPR loci, the sequence of direct repeats (DR), and the number of spacer units, along with the geographical origin and collection source. For this purpose, 3474 genomes containing CRISPR loci from the CRISPRCasdb of Salmonella enterica, Escherichia coli, and Klebsiella pneumoniae were analyzed, and the information regarding the isolates was recorded from the NCBI database. The most prevalent was the I-E CRISPR-Cas system in all three studied taxa. E. coli also presents the I-F type, but in a much lesser percentage. The systems found in K. pneumoniae can be classified into I-E and I-E*. The I-E and I-F systems have two CRISPR loci, while I-E* has only one locus upstream of the Cas cluster. PCR primers have been developed in this study for each CRISPR locus. Distinct clustering was not evident, but statistically significant relationships occurred between the different CRISPR loci and the number of spacer units. For each of the queried taxa, the number of spacers was significantly different (p < 0.01) by origin (Africa, Asia, Australia and Oceania, Europe, North America, and South America) but was not linked to the isolation source type (human, animal, plant, food, or laboratory strains).


Identification and Pilot Evaluation of Salivary Peptides from Anopheles albimanus as Biomarkers for Bite Exposure and Malaria Infection in Colombia.

  • Berlin Londono-Renteria‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Insect saliva induces significant antibody responses associated with the intensity of exposure to bites and the risk of disease in humans. Several salivary biomarkers have been characterized to determine exposure intensity to Old World Anopheles mosquito species. However, new tools are needed to quantify the intensity of human exposure to Anopheles bites and understand the risk of malaria in low-transmission areas in the Americas. To address this need, we conducted proteomic and bioinformatic analyses of immunogenic candidate proteins present in the saliva of uninfected Anopheles albimanus from two separate colonies-one originating from Central America (STECLA strain) and one originating from South America (Cartagena strain). A ~65 kDa band was identified by IgG antibodies in serum samples from healthy volunteers living in a malaria endemic area in Colombia, and a total of five peptides were designed from the sequences of two immunogenic candidate proteins that were shared by both strains. ELISA-based testing of human IgG antibody levels against the peptides revealed that the transferrin-derived peptides, TRANS-P1, TRANS-P2 and a salivary peroxidase peptide (PEROX-P3) were able to distinguish between malaria-infected and uninfected groups. Interestingly, IgG antibody levels against PEROX-P3 were significantly lower in people that have never experienced malaria, suggesting that it may be a good marker for mosquito bite exposure in naïve populations such as travelers and deployed military personnel. In addition, the strength of the differences in the IgG levels against the peptides varied according to location, suggesting that the peptides may able to detect differences in intensities of bite exposure according to the mosquito population density. Thus, the An. albimanus salivary peptides TRANS-P1, TRANS-P2, and PEROX-P3 are promising biomarkers that could be exploited in a quantitative immunoassay for determination of human-vector contact and calculation of disease risk.


Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning.

  • Biaojie Huang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Cancer-associated fibroblasts (CAFs) are heterogeneous constituents of the tumor microenvironment involved in the tumorigenesis, progression, and therapeutic responses of tumors. This study identified four distinct CAF subtypes of breast cancer (BRCA) using single-cell RNA sequencing (RNA-seq) data. Of these, matrix CAFs (mCAFs) were significantly associated with tumor matrix remodeling and strongly correlated with the transforming growth factor (TGF)-β signaling pathway. Consensus clustering of The Cancer Genome Atlas (TCGA) BRCA dataset using mCAF single-cell characteristic gene signatures segregated samples into high-fibrotic and low-fibrotic groups. Patients in the high-fibrotic group exhibited a significantly poor prognosis. A weighted gene co-expression network analysis and univariate Cox analysis of bulk RNA-seq data revealed 17 differential genes with prognostic values. The mCAF risk prognosis signature (mRPS) was developed using 10 machine learning algorithms. The clinical outcome predictive accuracy of the mRPS was higher than that of the conventional TNM staging system. mRPS was correlated with the infiltration level of anti-tumor effector immune cells. Based on consensus prognostic genes, BRCA samples were classified into the following two subtypes using six machine learning algorithms (accuracy > 90%): interferon (IFN)-γ-dominant (immune C2) and TGF-β-dominant (immune C6) subtypes. Patients with mRPS downregulation were associated with improved prognosis, suggesting that they can potentially benefit from immunotherapy. Thus, the mRPS model can stably predict BRCA prognosis, reflect the local immune status of the tumor, and aid clinical decisions on tumor immunotherapy.


Comparative Biochemical, Structural, and Functional Analysis of Recombinant Phospholipases D from Three Loxosceles Spider Venoms.

  • Hanna Câmara da Justa‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Spiders of Loxosceles genus are widely distributed and their venoms contain phospholipases D (PLDs), which degrade phospholipids and trigger inflammatory responses, dermonecrosis, hematological changes, and renal injuries. Biochemical, functional, and structural properties of three recombinant PLDs from L. intermedia, L. laeta, and L. gaucho, the principal species clinically relevant in South America, were analyzed. Sera against L. gaucho and L. laeta PLDs strongly cross-reacted with other PLDs, but sera against L. intermedia PLD mostly reacted with homologous molecules, suggesting underlying structural and functional differences. PLDs presented a similar secondary structure profile but distinct melting temperatures. Different methods demonstrated that all PLDs cleave sphingomyelin and lysophosphatidylcholine, but L. gaucho and L. laeta PLDs excelled. L. gaucho PLD showed greater "in vitro" hemolytic activity. L. gaucho and L. laeta PLDs were more lethal in assays with mice and crickets. Molecular dynamics simulations correlated their biochemical activities with differences in sequences and conformations of specific surface loops, which play roles in protein stability and in modulating interactions with the membrane. Despite the high similarity, PLDs from L. gaucho and L. laeta venoms are more active than L. intermedia PLD, requiring special attention from physicians when these two species prevail in endemic regions.


Nationwide Study of Drug Resistance Mutations in HIV-1 Infected Individuals under Antiretroviral Therapy in Brazil.

  • Ana Santos-Pereira‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008-2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.


Development of Viral-Vectored Vaccines and Virus Replicon Particle-Based Neutralisation Assay against Mayaro Virus.

  • Young Chan Kim‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Mayaro virus (MAYV) is an emerging alphavirus causing acute febrile illness associated with chronic polyarthralgia. Although MAYV is currently restricted to tropical regions in South America around the Amazon basin, it has the potential to spread globally by Aedes species mosquitoes. In addition, there are currently no specific therapeutics or licenced vaccines against MAYV infection. We have previously shown that an adenovirus based Mayaro vaccine (ChAdOx1 May) was able to provide full protection against MAYV challenge in vaccinated A129 mice and induced high neutralising antibody titres. In this study, we have constructed a replication deficient simian adenovirus (ChAdOx2) and a Modified Ankara Virus (MVA) based vaccine expressing the MAYV structural cassette (sMAYV) similar to ChAdOx1 May, and characterised recombinant MAYV E2 glycoprotein expressed in a mammalian system for immune monitoring. We demonstrate that ChAdOx2 May was able to induce high antibody titres similar to ChAdOx1 May, and MVA May was shown to be an effective boosting strategy following prime vaccination with ChAdOx1 or ChAdOx2 May. In order to measure MAYV neutralising ability, we have developed a virus replicon particle-based neutralisation assay which effectively detected neutralising antibodies against MAYV. In summary, our study indicates the potential for further clinical development of the viral vectored MAYV vaccines against MAYV infections.


Optimizing Agrobacterium-Mediated Transformation and CRISPR-Cas9 Gene Editing in the tropical japonica Rice Variety Presidio.

  • Marco Molina-Risco‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Bottlenecks in plant transformation and regeneration have slowed progress in applying CRISPR/Cas-based genome editing for crop improvement. Rice (Oryza sativa L.) has highly efficient temperate japonica transformation protocols, along with reasonably efficient indica protocols using immature embryos. However, rapid and efficient protocols are not available for transformation and regeneration in tropical japonica varieties, even though they represent the majority of rice production in the U.S. and South America. The current study has optimized a protocol using callus induction from mature seeds with both Agrobacterium-mediated and biolistic transformation of the high-yielding U.S. tropical japonica cultivar Presidio. Gene editing efficiency was tested by evaluating knockout mutations in the phytoene desaturase (PDS) and young seedling albino (YSA) genes, which provide a visible phenotype at the seedling stage for successful knockouts. Using the optimized protocol, transformation of 648 explants with particle bombardment and 532 explants with Agrobacterium led to a 33% regeneration efficiency. The YSA targets had ambiguous phenotypes, but 60% of regenerated plants for PDS showed an albino phenotype. Sanger sequencing of edited progeny showed a number of insertions, deletions, and substitutions at the gRNA target sites. These results pave the way for more efficient gene editing of tropical japonica rice varieties.


Repositioned Drugs for Chagas Disease Unveiled via Structure-Based Drug Repositioning.

  • Melissa F Adasme‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Chagas disease, caused by the parasite Trypanosoma cruzi, affects millions of people in South America. The current treatments are limited, have severe side effects, and are only partially effective. Drug repositioning, defined as finding new indications for already approved drugs, has the potential to provide new therapeutic options for Chagas. In this work, we conducted a structure-based drug repositioning approach with over 130,000 3D protein structures to identify drugs that bind therapeutic Chagas targets and thus represent potential new Chagas treatments. The screening yielded over 500 molecules as hits, out of which 38 drugs were prioritized following a rigorous filtering process. About half of the latter were already known to have trypanocidal activity, while the others are novel to Chagas disease. Three of the new drug candidates-ciprofloxacin, naproxen, and folic acid-showed a growth inhibitory activity in the micromolar range when tested ex vivo on T. cruzi trypomastigotes, validating the prediction. We show that our drug repositioning approach is able to pinpoint relevant drug candidates at a fraction of the time and cost of a conventional screening. Furthermore, our results demonstrate the power and potential of structure-based drug repositioning in the context of neglected tropical diseases where the pharmaceutical industry has little financial interest in the development of new drugs.


SHMT2 Induces Stemness and Progression of Head and Neck Cancer.

  • Yanli Jin‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: