Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis.

  • Zhenghong Li‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Inflammation and transforming growth factor-β1 (TGF-β1) contribute to the development of peritoneal fibrosis (PF), which is associated with peritoneal dialysis (PD). Astragalus membranaceus (Astragalus) has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson's staining, as well as through the expression of fibroblast surface protein (FSP) and collagen III. The expression levels of monocyte chemoattractant protein (MCP)-1, F4/80 (macrophage/monocyte marker in rat), TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF.


ROCK2 Regulates Monocyte Migration and Cell to Cell Adhesion in Vascular Endothelial Cells.

  • Yusuke Takeda‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The small GTPase Rho and its downstream effector, Rho-kinase (ROCK), regulate various cellular functions, including organization of the actin cytoskeleton, cell adhesion and migration. A pro-inflammatory lipid mediator, lysophosphatidic acid (LPA), is a potent activator of the Rho/ROCK signalling pathway and has been shown to induce the expression of chemokines and cell adhesion molecules (CAMs). In the present study, we aimed to elucidate the precise mechanism by which ROCK regulates LPA-induced expressions and functions of chemokines and CAMs. We observed that ROCK blockade reduced LPA-induced phosphorylation of IκBα and inhibited NF-κB RelA/p65 phosphorylation, leading to attenuation of RelA/p65 nuclear translocation. Furthermore, small interfering RNA-mediated ROCK isoform knockdown experiments revealed that LPA induces the expression of monocyte chemoattractant protein-1 (MCP-1) and E-selectin via ROCK2 in human aortic endothelial cells (HAECs). Importantly, we found that ROCK2 but not ROCK1 controls LPA-induced monocytic migration and monocyte adhesion toward endothelial cells. These findings demonstrate that ROCK2 is a key regulator of endothelial inflammation. We conclude that targeting endothelial ROCK2 is potentially effective in attenuation of atherosclerosis.


Tear-Derived Exosome Proteins Are Increased in Patients with Thyroid Eye Disease.

  • Jeong-Sun Han‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Exosomes contain proteins, lipids, RNA, and DNA that mediate intercellular signaling. Exosomes can contribute to the pathological processes of various diseases, although their roles in ocular diseases are unclear. We aimed to isolate exosomes from tear fluids (TF) of patients with Thyroid eye disease (TED) and analyze the exosomal proteins. TFs were collected from eight patients with TED and eight control subjects. The number of TF exosomes were measured using nanoparticle-tracking analysis. The expression of specific proteins in the purified exosome pellets were analyzed using a Proteome Profiler Array Kit. Cultured normal orbital fibroblasts were incubated with TF exosomes from patients with TED and control subjects, and changes in inflammatory cytokine levels were compared. TF exosomes from TED patients showed more exosomes than the control subjects. The expression levels of exosomal proteins vitamin D-binding (VDB) protein, C-reactive protein (CRP), chitinase 3-like 1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), and vascular adhesion molecule-1 (VCAM-1) were significantly increased in patients with TED, compared to those of controls. Orbital fibroblasts exposed to TF exosomes from patients with TED showed significantly higher levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) production than those treated with control TF exosomes. Specific proteins showed higher expression in exosomes from TED patients, implying that they may play keys roles in TED pathogenesis.


Effect of Fibroblast Growth Factor 21 on the Development of Atheromatous Plaque and Lipid Metabolic Profiles in an Atherosclerosis-Prone Mouse Model.

  • Hyo Jin Maeng‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism. We aimed to investigate the effect of an FGF21 analogue (LY2405319) on the development of atherosclerosis and its associated parameters. ApoE-/- mice were fed an atherogenic diet for 14 weeks and were randomly assigned to control (saline) or FGF21 (0.1 mg/kg) treatment group (n = 10/group) for 5 weeks. Plaque size in the aortic arch/valve areas and cardiovascular risk markers were evaluated in blood and tissues. The effects of FGF21 on various atherogenesis-related pathways were also assessed. Atherosclerotic plaque areas in the aortic arch/valve were significantly smaller in the FGF21 group than in controls after treatment. FGF21 significantly decreased body weight and glucose concentrations, and increased circulating adiponectin levels. FGF21 treatment alleviated insulin resistance and decreased circulating concentrations of triglycerides, which were significantly correlated with plaque size. FGF21 treatment reduced lipid droplets in the liver and decreased fat cell size and inflammatory cell infiltration in the abdominal visceral fat compared with the control group. The monocyte chemoattractant protein-1 levels were decreased and β-hydroxybutyrate levels were increased by FGF21 treatment. Uncoupling protein 1 expression in subcutaneous fat was greater and fat cell size in brown fat was smaller in the FGF21 group compared with controls. Administration of FGF21 showed anti-atherosclerotic effects in atherosclerosis-prone mice and exerted beneficial effects on critical atherosclerosis pathways. Improvements in inflammation and insulin resistance seem to be mechanisms involved in the mitigation of atherosclerosis by FGF21 therapy.


Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κBTGF-β1/Smad Signaling Pathway.

  • Yi Quan‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Renal fibrosis is a common feature of all progressive chronic kidney diseases. Sirtuin 3(SIRT3) is one of the mitochondrial sirtuins, and plays a role in the regulation of mitochondrialbiogenesis, oxidative stress, fatty acid metabolism, and aging. Recently, honokiol (HKL), as apharmaceutical SIRT3 activator, has been observed to have a protective effect against pressureoverload-induced cardiac hypertrophy by increasing SIRT3 activity. In this study, we investigatedwhether HKL, as a SIRT3 activator, also has protective effects against unilateral ureteral obstruction(UUO)-induced renal tubulointerstitial fibrosis through SIRT3-dependent regulation ofmitochondrial dynamics and the nuclear factor-κB (NF-κB)/transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. We found that HKL decreased the UUO-induced increase in tubularinjury and extracellular matrix (ECM) deposition in mice. HKL also decreased myofibroblastactivation and proliferation in UUO kidneys and NRK-49F cells. Finally, we showed that HKLtreatment decreased UUO-induced mitochondrial fission and promoted mitochondrial fusionthrough SIRT3-dependent effects. In conclusion, activation of SIRT3 via HKL treatment might havebeneficial effects on UUO-induced renal fibrosis through SIRT3-dependent regulation ofmitochondrial dynamics and the NF-κB/TGF-β1/Smad signaling pathway.


Mammalian Glycosylation Patterns Protect Citrullinated Chemokine MCP-1/CCL2 from Partial Degradation.

  • Olexandr Korchynskyi‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic agent for monocytes, primarily produced by macrophages and endothelial cells. Significantly elevated levels of MCP-1/CCL2 were found in synovial fluids of patients with rheumatoid arthritis (RA), compared to osteoarthritis or other arthritis patients. Several studies suggested an important role for MCP-1 in the massive inflammation at the damaged joint, in part due to its chemotactic and angiogenic effects. It is a known fact that the post-translational modifications (PTMs) of proteins have a significant impact on their properties. In mammals, arginine residues within proteins can be converted into citrulline by peptidylarginine deiminase (PAD) enzymes. Anti-citrullinated protein antibodies (ACPA), recognizing these PTMs, have become a hallmark for rheumatoid arthritis (RA) and other autoimmune diseases and are important in diagnostics and prognosis. In previous studies, we found that citrullination converts the neutrophil attracting chemokine neutrophil-activating peptide 78 (ENA-78) into a potent macrophage chemoattractant. Here we report that both commercially available and recombinant bacterially produced MCP-1/CCL2 are rapidly (partially) degraded upon in vitro citrullination. However, properly glycosylated MCP-1/CCL2 produced by mammalian cells is protected against degradation during efficient citrullination. Site-directed mutagenesis of the potential glycosylation site at the asparagine-14 residue within human MCP-1 revealed lower expression levels in mammalian expression systems. The glycosylation-mediated recombinant chemokine stabilization allows the production of citrullinated MCP-1/CCL2, which can be effectively used to calibrate crucial assays, such as modified ELISAs.


Enamel matrix derivative promote primary human pulp cell differentiation and mineralization.

  • Elisabeth Aurstad Riksen‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5-50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10⁻⁸ M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.


Lipoteichoic Acid Accelerates Bone Healing by Enhancing Osteoblast Differentiation and Inhibiting Osteoclast Activation in a Mouse Model of Femoral Defects.

  • Chih-Chien Hu‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Lipoteichoic acid (LTA) is a cell wall component of Gram-positive bacteria. Limited data suggest that LTA is beneficial for bone regeneration in vitro. Thus, we used a mouse model of femoral defects to explore the effects of LTA on bone healing in vivo. Micro-computed tomography analysis and double-fluorochrome labeling were utilized to examine whether LTA can accelerate dynamic bone formation in vivo. The effects of LTA on osteoblastogenesis and osteoclastogenesis were also studied in vitro. LTA treatment induced prompt bone bridge formation, rapid endochondral ossification, and accelerated healing of fractures in mice with femoral bone defects. In vitro, LTA directly enhanced indicators of osteogenic factor-induced MC3T3-E1 cell differentiation, including alkaline phosphatase activity, calcium deposition and osteopontin expression. LTA also inhibited osteoclast activation induced by receptor activator of nuclear factor-kappa B ligand. We identified six molecules that may be associated with LTA-accelerated bone healing: monocyte chemoattractant protein 1, chemokine (C-X-C motif) ligand 1, cystatin C, growth/differentiation factor 15, endostatin and neutrophil gelatinase-associated lipocalin. Finally, double-fluorochrome, dynamic-labeling data indicated that LTA significantly enhanced bone-formation rates in vivo. In conclusion, our findings suggest that LTA has promising bone-regeneration properties.


Colonic Coffee Phenols Metabolites, Dihydrocaffeic, Dihydroferulic, and Hydroxyhippuric Acids Protect Hepatic Cells from TNF-α-Induced Inflammation and Oxidative Stress.

  • Andrea Sánchez-Medina‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Coffee presents beneficial health properties, including antiobesity effects. However, its effects on inflammation are controversial. Hydroxycinnamic acids are the main coffee phenolic bioactive compounds. In human bioavailability studies carried out with coffee, among the most abundant compounds found in urine and plasma were the colonic metabolites, dihydrocaffeic (DHCA), dihydroferulic (DHFA), and hydroxyhippuric (HHA) acids. To understand the hepato-protective potential of these three compounds, we tested whether treatment with realistic concentrations (0.5-10 µM) were effective to counteract inflammatory process and oxidative status induced by tumor necrosis factor α (TNF-α). First, we established a novel model of inflammation/oxidation using TNF-α and HepG2 cells. Afterwards, we evaluated the activity of DHCA, DHFA, and HHA against the inflammatory/oxidative challenge through the determination of the inflammatory mediators, interleukins (IL)-6, and IL-8 and chemokines, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1, as well as the levels of biomarkers of oxidative stress, such as reactive oxygen species, reduced glutathione, and the antioxidant enzymes glutathione peroxidase and reductase. Results showed that all three compounds have a potential hepato-protective effect against the induced inflammatory/oxidative insult.


Linking ABCC6 Deficiency in Primary Human Dermal Fibroblasts of PXE Patients to p21-Mediated Premature Cellular Senescence and the Development of a Proinflammatory Secretory Phenotype.

  • Janina Tiemann‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Pseudoxanthoma elasticum (PXE) is a rare autosomal-recessive disorder that is mainly caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Clinically PXE is characterized by a loss of skin elasticity, arteriosclerosis or visual impairments. It also shares some molecular characteristics with known premature aging syndromes like the Hutchinson-Gilford progeria syndrome (HGPS). However, little is known about accelerated aging processes, especially on a cellular level for PXE now. Therefore, this study was performed to reveal a potential connection between premature cellular aging and PXE pathogenesis by analyzing cellular senescence, a corresponding secretory phenotype and relevant factors of the cell cycle control in primary human dermal fibroblasts of PXE patients. Here, we could show an increased senescence-associated β-galactosidase (SA-β-Gal) activity as well as an increased expression of proinflammatory factors of a senescence-associated secretory phenotype (SASP) like interleukin 6 (IL6) and monocyte chemoattractant protein-1 (MCP1). We further observed an increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p21, but no simultaneous induction of p53 gene expression. These data indicate that PXE is associated with premature cellular senescence, which is possibly triggered by a p53-independent p21-mediated mechanism leading to a proinflammatory secretory phenotype.


Rice Protein Exerts Anti-Inflammatory Effect in Growing and Adult Rats via Suppressing NF-κB Pathway.

  • Zhengxuan Wang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

To elucidate the effect of rice protein (RP) on the depression of inflammation, growing and adult rats were fed with caseins and RP for 2 weeks. Compared with casein, RP reduced hepatic accumulations of reactive oxygen species (ROS) and nitro oxide (NO), and plasma activities of alanine transaminase (ALT) and aspartate transaminase (AST) in growing and adult rats. Intake of RP led to increased mRNA levels, and protein expressions of phosphoinositide 3 kinase (PI3K), protein kinase B (Akt), nuclear factor-κB 1 (NF-αB1), reticuloendotheliosis viral oncogene homolog A (RelA), tumor necrotic factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and monocyte chemoattractant protein-1 (MCP-1) were decreased, whereas hepatic expressions of interleukin-10 (IL-10) and heme oxygenase 1 (HO-1) were increased by RP. The activation of NF-κB was suppressed by RP through upregulation of inhibitory κB α (IκBα), resulting in decreased translocation of nuclear factor-κB 1 (p50) and RelA (p65) to the nucleus in RP groups. The present study demonstrates that RP exerts an anti-inflammatory effect to inhibit ROS-derived inflammation through suppression of the NF-κB pathway in growing and adult rats. Results suggest that the anti-inflammatory capacity of RP is independent of age.


IL-15 Prevents Renal Fibrosis by Inhibiting Collagen Synthesis: A New Pathway in Chronic Kidney Disease?

  • Aurore Devocelle‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Chronic kidney disease (CKD), secondary to renal fibrogenesis, is a public health burden. The activation of interstitial myofibroblasts and excessive production of extracellular matrix (ECM) proteins are major events leading to end-stage kidney disease. Recently, interleukin-15 (IL-15) has been implicated in fibrosis protection in several organs, with little evidence in the kidney. Since endogenous IL-15 expression decreased in nephrectomized human allografts evolving toward fibrosis and kidneys in the unilateral ureteral obstruction (UUO) model, we explored IL-15's renoprotective role by pharmologically delivering IL-15 coupled or not with its soluble receptor IL-15Rα. Despite the lack of effects on myofibroblast accumulation, both IL-15 treatments prevented tubulointerstitial fibrosis (TIF) in UUO as characterized by reduced collagen and fibronectin deposition. Moreover, IL-15 treatments inhibited collagen and fibronectin secretion by transforming growth factor-β (TGF-β)-treated primary myofibroblast cultures, demonstrating that the antifibrotic effect of IL-15 in UUO acts, in part, through a direct inhibition of ECM synthesis by myofibroblasts. In addition, IL-15 treatments resulted in decreased expression of monocyte chemoattractant protein 1 (MCP-1) and subsequent macrophage infiltration in UUO. Taken together, our study highlights a major role of IL-15 on myofibroblasts and macrophages, two main effector cells in renal fibrosis, demonstrating that IL-15 may represent a new therapeutic option for CKD.


Study of the Role of the Tyrosine Kinase Receptor MerTK in the Development of Kidney Ischemia-Reperfusion Injury in RCS Rats.

  • Thomas Pelé‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.


Efficacy of Azatyrosine-Phenylbutyric Hydroxamides, a Histone Deacetylase Inhibitor, on Chemotherapy-Induced Gastrointestinal Mucositis.

  • Po-Lin Liao‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Gastrointestinal mucositis is a serious side effect of chemotherapy. Currently, no effective treatment exists for chemotherapy-induced mucositis, prompting the need to develop an anti-mucositis agent for use in clinics. The present study investigated whether azatyrosine-PBHA (AzP), a histone deacetylase inhibitor, has a therapeutic effect on intestinal mucosa. The results indicated that AzP did not affect the proliferation and viability of cancer cells, outcomes that are achieved by suberoylanilide hydroxamic acid (SAHA). However, AzP could decrease production of the inflammatory mediators interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor-necrosis factor-α (TNF-α). In vivo histopathological assessment showed that AzP reduced cisplatin-induced injury to the jejunum villi and triggered weight loss in the C57BL/6 mice. Immunohistochemistry (IHC) results demonstrated that mice treated with AzP also recovered from cisplatin-induced injury to the intestinal mucosa. Mechanistic in vitro study using DAVID/KEGG enrichment analysis of microarray data and confirmation by a Western blot indicated the influence of AzP on the MEK/ERK and AKT-dependent pathway. In conclusion, the study demonstrated that AzP might regulate the MEK/ERK MAPK signaling pathway to attenuate MCP-1, TNF-α, and IL-6 production and provide opportunities for the development of new anti-inflammatory drugs targeting mucositis.


MCP-1/MCPIP-1 Signaling Modulates the Effects of IL-1β in Renal Cell Carcinoma through ER Stress-Mediated Apoptosis.

  • Chia-Huei Lee‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

In renal cell carcinoma (RCC), interleukin (IL)-1β may be a pro-metastatic cytokine. However, we have not yet noted the clinical association between tumoral expression or serum level of IL-1β and RCC in our patient cohort. Herein, we investigate molecular mechanisms elicited by IL-1β in RCC. We found that IL-1β stimulates substantial monocyte chemoattractant protein (MCP)-1 production in RCC cells by activating NF-kB and AP-1. In our xenograft RCC model, intra-tumoral MCP-1 injection down-regulated Ki67 expression and reduced tumor size. Microarray analysis revealed that MCP-1 treatment altered protein-folding processes in RCC cells. MCP-1-treated RCC cells and xenograft tumors expressed MCP-1-induced protein (MCPIP) and molecules involved in endoplasmic reticulum (ER) stress-mediated apoptosis, namely C/EBP Homologous Protein (CHOP), protein kinase-like ER kinase (PERK), and calnexin (CNX). ER stress-mediated apoptosis in MCP-1-treated RCC cells was confirmed using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Moreover, ectopic MCPIP expression increased PERK expression in Human embryonic kidney (HEK)293 cells. Our meta-analysis revealed that low MCP-1 levels reduce 1-year post-nephrectomy survival in patients with RCC. Immunohistochemistry indicated that in some RCC biopsy samples, the correlation between MCP-1 or MCPIP expression and tumor stages was inverse. Thus, MCP-1 and MCPIP potentially reduce the IL-1β-mediated oncogenic effect in RCC; our findings suggest that ER stress is a potential RCC treatment target.


Asprosin Enhances Cytokine Production by a Co-Culture of Fully Differentiated Mature Adipocytes and Macrophages Leading to the Exacerbation of the Condition Typical of Obesity-Related Inflammation.

  • Agnieszka I Mazur-Bialy‎
  • International journal of molecular sciences‎
  • 2023‎

Asprosin, a fasting-induced, glucogenic, and orexigenic adipokine, has gained popularity in recent years as a potential target in the fight against obesity and its complications. However, the contribution of asprosin to the development of moderate obesity-related inflammation remains still unknown. The present study aimed to evaluate the effect of asprosin on the inflammatory activation of adipocyte-macrophage co-cultures at various stages of differentiation. The study was performed on co-cultures of the murine 3T3L1 adipocyte and the RAW264.7 macrophage cell lines treated with asprosin before, during, and after 3T3L1 cell differentiation, with or without lipopolysaccharide (LPS) stimulation. Cell viability, overall cell activity, and the expression and release of key inflammatory cytokines were analyzed. In the concentration range of 50-100 nM, asprosin increased the pro-inflammatory activity in the mature co-culture and enhanced the expression and release of tumor necrosis factor α (TNF-α), high-mobility group box protein 1 (HMGB1), and interleukin 6 (IL-6). Macrophage migration was also increased, which could be related to the upregulated expression and release of monocyte chemoattractant protein-1 (MCP-1) by the adipocytes. In summary, asprosin exerted a pro-inflammatory effect on the mature adipocyte-macrophage co-culture and may contribute to the spread of moderate obesity-associated inflammation. Nevertheless, further research is needed to fully elucidate this process.


Ellagic Acid and Urolithins A and B Differentially Regulate Fat Accumulation and Inflammation in 3T3-L1 Adipocytes While Not Affecting Adipogenesis and Insulin Sensitivity.

  • Luis Cisneros-Zevallos‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Ellagic acid (EA) is a component of ellagitannins, present in crops such as pecans, walnuts, and many berries, which metabolized by the gut microbiota forms urolithins A, B, C, or D. In this study, ellagic acid, as well as urolithins A and B, were tested on 3T3-L1 preadipocytes for differentiation and lipid accumulation. In addition, inflammation was studied in mature adipocytes challenged with lipopolysaccharide (LPS). Results indicated that EA and urolithins A and B did not affect differentiation (adipogenesis) and only EA and urolithin A attenuated lipid accumulation (lipogenesis), which seemed to be through gene regulation of glucose transporter type 4 (GLUT4) and adiponectin. On the other hand, gene expression of cytokines and proteins associated with the inflammation process indicate that urolithins and EA differentially inhibit tumor necrosis factor alpha (TNFα), inducible nitric oxide synthase (iNOS), interleukin 6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Urolithins A and B were found to reduce nuclear levels of phosphorylated nuclear factor κB (p-NF-κB), whereas all treatments showed expression of nuclear phosphorylated protein kinase B (p-AKT) in challenged LPS cells when treated with insulin, indicating the fact that adipocytes remained insulin sensitive. In general, urolithin A is a compound able to reduce lipid accumulation, without affecting the protein expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein-α (c/EBPα), and PPARα, whereas EA and urolithin B were found to enhance PPARγ and c/EBPα protein expressions as well as fatty acid (FA) oxidation, and differentially affected lipid accumulation.


Short Chain Fatty Acid Acetate Increases TNFα-Induced MCP-1 Production in Monocytic Cells via ACSL1/MAPK/NF-κB Axis.

  • Areej Al-Roub‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway.

  • Umadevi Subramanian‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway.


Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice.

  • Sheng-Min Hsu‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Reactive oxygen species (ROS) are produced by host phagocytes and play an important role in antimicrobial actions against various pathogens. Autoimmune uveitis causes blindness and severe visual impairment in humans at all ages worldwide. However, the role of ROS in autoimmune uveitis remains unclear. We used ROS-deficient (Ncf1-/-) mice to investigate the role of ROS in experimental autoimmune uveitis (EAU). Besides, we also used the antioxidant N-acetylcysteine (NAC) treatment to evaluate the effect of suppression of ROS on EAU in mice. The EAU disease scores of Ncf1-/- mice were significantly lower than those of wild-type mice. EAU induction increased the levels of cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, and tumor necrosis factor (TNF)-α) and chemokines (monocyte chemoattractant protein (MCP)-1) in the retinas of wild-type mice but not in those of Ncf1-/- mice. EAU induction enhanced the level of NF-κB activity in wild-type mice. However, the level of NF-κB activity in Ncf1-/- mice with EAU induction was low. Treatment with the antioxidant NAC also decreased the severity of EAU in mice with reduced levels of oxidative stress, inflammatory mediators, and NF-κB activation in the retina. We successfully revealed a novel role of ROS in the pathogenesis of EAU and suggest a potential antioxidant role for the treatment of autoimmune uveitis in the future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: