Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

A GCC-box motif in the promoter of nudix hydrolase 7 (AtNUDT7) gene plays a role in ozone response of Arabidopsis ecotypes.

  • Meenakumari Muthuramalingam‎ et al.
  • Genomics‎
  • 2015‎

Arabidopsis nudix hydrolase 7 (AtNudt7) plays an important role in regulating redox homeostasis during stress/defense signaling and seed germination. The early responsiveness of AtNudt7 provides a useful marker especially during oxidative cell death in plants. Nuclear run-on assays demonstrate that AtNudt7 is transcriptionally regulated. AtNUDT7 promoter-GUS transgenic plants show rapid inducibility in response to ozone and pathogens. A 16-bp insertion containing a GCC-box motif was identified in the promoter of a Ws-2 ecotype and was absent in Col-0. The 16-bp sequence was identified in 5% of the Arabidopsis ecotypes used in the 1001 genome sequencing project. The kinetics of expression of Ethylene Response Factor 1 (ERF1), a GCC-box binding factor is in synchrony with expression of AtNudt7 in response to ozone stress. ERF1 protein binds to the GCC-box motif in the AtNUDT7 promoter. In silico analysis of erf1 mutant and overexpressor lines supports a role for this protein in regulating AtNUDT7 expression.


Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: Insights for bioremediation.

  • Houda Trifi‎ et al.
  • Genomics‎
  • 2020‎

Phosphogypsum (PG) is an acidic by-product from the phosphate fertilizer industry and it is characterized by a low nutrient availability and the presence of radionuclides and heavy metals which pose a serious problem in its management. Here, we have applied Illumina MiSeq sequencing technology and five bioinformatics pipelines to explore the phylogenetic communities in Tunisian PG. Taking One Codex as a reference method, we present the results of 16S-rDNA-gene-based metataxonomics abundances with four other alternative bioinformatics pipelines (MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST), mothur, MICrobial Community Analysis (MICCA) and Quantitative Insights into Microbial Ecology (QIIME)), when analyzing the Tunisian PG. Importantly, based on 16S rDNA datasets, the functional capabilities of microbial communities of PG were deciphered. They suggested the presence of PG autochthonous bacteria valorizable into (1) removal of radioactive elements and toxic heavy metals, (2) promotion of plant growth, (3) oxidation and (4) reduction of sulfate. These bacteria can be explored further for applications in the bioremediation of by-products, like PG, by different processes.


Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics.

  • Aminur Rahman‎ et al.
  • Genomics‎
  • 2015‎

Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~4.5 Mb in size encompassing ~80% of the chromosomal DNA. We found that the set of ordered contigs contains abundant regions of similarity with other Lysinibacillus genomes and clearly identifiable genome rearrangements. Furthermore, all genes of B1-CDA that were predicted be involved in its resistance to arsenic and/or other heavy metals were annotated. The presence of arsenic responsive genes was verified by PCR in vitro conditions. The findings of this study highlight the significance of this bacterium in removing arsenics and other toxic metals from the contaminated sources. The genetic mechanisms of the isolate could be used to cope with arsenic toxicity.


Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology.

  • José Sebastián Dávila Costa‎ et al.
  • Genomics‎
  • 2020‎

The genus Streptomyces is widely recognized for its biotechnological potential. Due to a need to improve crops, clean up the environment and produce novel antimicrobial molecules exploiting Streptomyces has become a priority. To further explore the biotechnological potential of these organisms we analyzed the genome of the strain Streptomyces sp. Z38 isolated from contaminated roots tissues. Our analysis not only confirmed the ability of the strain to produce plant growth promoting traits but also a range of mechanisms to cope with the toxic effect of heavy metals through genes involved in metal homeostasis and oxidative stress response. The production of silver nanoparticles indicated that Streptomyces sp. Z38 may find utility in Green, Grey and Red biotechnology.


Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons.

  • Hitesh Tikariha‎ et al.
  • Genomics‎
  • 2019‎

Metagenome from refinery wastewater treatment plant running under nitrogen stress was analyzed for mining of novel aromatic hydrocarbon-degrading bacteria. The sequence data were assembled using metaspade followed by binning using the Metabat tool to assemble genome; where coverage and depth were calculated using bowtie and samtools. The analysis picked a novel genome belonging to family Bradyrhizobiaceae, identified based on 16S rDNA gene which was supported by CheckM and Kraken analysis. Using RAST, the assembled genome showed the capabilities for nitrogen fixation with the utilization of multiple hydrocarbon substrates with 14 different types of oxygenases as mapped by Minpath. An additional genetic feature like genes for stress and resistance towards heavy metals and antibiotic suggested that the genome has gone through the rigorous process of adaptation. If such bacteria could be cultivated then it will open the broad window of bioremediation strategies under nitrogen stress environment.


Genomic analysis of a Kpi (pilus system)-positive and CTX-M-15-producing Klebsiella pneumoniae belonging to the high-risk clone ST15 isolated from an impacted river in Brazil.

  • Brenda Cardoso‎ et al.
  • Genomics‎
  • 2022‎

Convergence of resistance and virulence in Klebsiella pneumoniae is a critical public health issue worldwide. A multidrug-resistant CTX-M-15-producing K. pneumoniae (TIES-4900 strain) was isolated from a highly impacted urban river, in Brazil. The genome was sequenced by MiSeq Illumina platform and de novo assembled using Unicycler. In silico prediction was accomplished by bioinformatics tools. The size of the genome is 5.4 Mb with 5145 protein-coding genes. TIES-4900 strain belonged to the sequence type ST15, yersiniabactin sequence type YbST10, ICEKp4, KL24 (wzi-24) and O1v1 locus. Phylogenomics confirmed genomic relatedness with ST15 clones from human and animal hosts. Convergence of broad resistome (antibiotics, heavy-metals and biocides) and virulome, including the Kpi pilus system involved in host-pathogen interaction and persistence of ST15 clone to hospital environments, were predicted. Virulent behavior was confirmed in the Galleria mellonella infection model. This study may give genomic insights on the spread of critical-priority WHO pathogens beyond hospital settings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: