Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Odors Associated With Autobiographical Memory Induce Visual Imagination of Emotional Scenes as Well as Orbitofrontal-Fusiform Activation.

  • Yuri Masaoka‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Specific odors can induce memories of the past, especially those associated with autobiographical and episodic memory. Odors associated with autobiographical memories have been found to elicit stronger activation in the orbitofrontal cortex, hippocampus, and parahippocampus compared with odors not linked to personal memories. Here, we examined whether continuous odor stimuli associated with autobiographical memories could activate the above olfactory areas in older adults and speculated regarding whether this odor stimulation could have a protective effect against age-related cognitive decline. Specifically, we used functional magnetic resonance imaging to investigate the relationship between blood oxygen levels in olfactory regions and odor-induced subjective memory retrieval and emotions associated with autobiographical memory in older adults. In our group of healthy older adults, the tested odors induced autobiographical memories that were accompanied by increasing levels of retrieval and the feeling of being "brought back in time." The strength of the subjective feelings, including vividness of the memory and degree of comfort, impacted activation of the left fusiform gyrus and left posterior orbitofrontal cortex. Further, our path model suggested that the strength of memory retrieval and of the emotions induced by odor-evoked autobiographical memories directly influenced neural changes in the left fusiform gyrus, and impacted left posterior orbitofrontal cortex activation through the left fusiform response.


An Empirical Comparative Study on the Two Methods of Eliciting Singers' Emotions in Singing: Self-Imagination and VR Training.

  • Jin Zhang‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Emotional singing can affect vocal performance and the audience's engagement. Chinese universities use traditional training techniques for teaching theoretical and applied knowledge. Self-imagination is the predominant training method for emotional singing. Recently, virtual reality (VR) technologies have been applied in several fields for training purposes. In this empirical comparative study, a VR training task was implemented to elicit emotions from singers and further assist them with improving their emotional singing performance. The VR training method was compared against the traditional self-imagination method. By conducting a two-stage experiment, the two methods were compared in terms of emotions' elicitation and emotional singing performance. In the first stage, electroencephalographic (EEG) data were collected from the subjects. In the second stage, self-rating reports and third-party teachers' evaluations were collected. The EEG data were analyzed by adopting the max-relevance and min-redundancy algorithm for feature selection and the support vector machine (SVM) for emotion recognition. Based on the results of EEG emotion classification and subjective scale, VR can better elicit the positive, neutral, and negative emotional states from the singers than not using this technology (i.e., self-imagination). Furthermore, due to the improvement of emotional activation, VR brings the improvement of singing performance. The VR hence appears to be an effective approach that may improve and complement the available vocal music teaching methods.


Anodal Transcranial Direct Current Stimulation Increases Bilateral Directed Brain Connectivity during Motor-Imagery Based Brain-Computer Interface Control.

  • Bryan S Baxter‎ et al.
  • Frontiers in neuroscience‎
  • 2017‎

Transcranial direct current stimulation (tDCS) has been shown to affect motor and cognitive task performance and learning when applied to brain areas involved in the task. Targeted stimulation has also been found to alter connectivity within the stimulated hemisphere during rest. However, the connectivity effect of the interaction of endogenous task specific activity and targeted stimulation is unclear. This study examined the aftereffects of concurrent anodal high-definition tDCS over the left sensorimotor cortex with motor network connectivity during a one-dimensional EEG based sensorimotor rhythm brain-computer interface (SMR-BCI) task. Directed connectivity following anodal tDCS illustrates altered connections bilaterally between frontal and parietal regions, and these alterations occur in a task specific manner; connections between similar cortical regions are altered differentially during left and right imagination trials. During right-hand imagination following anodal tDCS, there was an increase in outflow from the left premotor cortex (PMC) to multiple regions bilaterally in the motor network and increased inflow to the stimulated sensorimotor cortex from the ipsilateral PMC and contralateral sensorimotor cortex. During left-hand imagination following anodal tDCS, there was increased outflow from the stimulated sensorimotor cortex to regions across the motor network. Significant correlations between connectivity and the behavioral measures of total correct trials and time-to-hit (TTH) correct trials were also found, specifically that the input to the left PMC correlated with decreased right hand imagination performance and that flow from the ipsilateral posterior parietal cortex (PPC) to midline sensorimotor cortex correlated with improved performance for both right and left hand imagination. These results indicate that tDCS interacts with task-specific endogenous activity to alter directed connectivity during SMR-BCI. In order to predict and maximize the targeted effect of tDCS, the interaction of stimulation with the dynamics of endogenous activity needs to be examined comprehensively and understood.


Virtual Reality (VR) in Assessment and Treatment of Addictive Disorders: A Systematic Review.

  • Tomoyuki Segawa‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Background: Substance Use Disorder (SUD) and behavioral addictions are common and require a multidisciplinary approach. New technologies like Virtual Reality could have the potential to improve assessment and treatment of these disorders. Objective: In the present paper, we therefore present an overview of Virtual Reality (Head Mounted Devices) in the field of addiction medicine for craving assessment and treatment. Method: We conducted a systematic review by querying PubMed database for the titles of articles published up to March 2019 with the terms [virtual] AND [addictive] OR [addiction] OR [substance] OR [alcohol] OR [cocaine] OR [cannabis] OR [opioid] OR [tobacco] OR [nicotine] OR [methamphetamine] OR [gaming] OR [gambling]. Results: We screened 319 abstracts and analyzed 37 articles, dividing them into two categories, the first for assessment of cue reactivity (craving, psychophysiological response and attention to cue) and the second for intervention, each drug (nicotine, cocaine, alcohol, cannabis, gambling) being detailed within each category. Conclusions: This overview suggest that VR provide benefits in the assessment and treatment of substance use disorders and behavior addictions and achieve high levels of ecological validity. While, craving provocation in VR is effective across addiction disorders, treatments based exclusively on virtual exposure to drug related cues as shown heterogenous results.


Benefits of Implicit Regulation of Instructed Fear: Evidence From Neuroimaging and Functional Connectivity.

  • Yicheng Zhang‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Instructed fear, which denotes fearful emotions learned from others' verbal instructions, is an important form of fear acquisition in humans. Maladaptive instructed fear produces detrimental effects on health, but little is known about performing an efficient regulation of instructed fear and its underlying neural substrates. To address this question, 26 subjects performed an instructed fear task where emotional experiences and functional neuroimages were recorded during watching, explicit regulation (calmness imagination), and implicit regulation (calmness priming) conditions. Results indicated that implicit regulation decreased activity in the left amygdala and left insula for instructed fear; however, these effects were absent in explicit regulation. The implementation of implicit regulation did not increase activity in the frontoparietal control regions, while explicit regulation increased dorsolateral prefrontal cortex activity. Furthermore, implicit regulation increased functional connectivity between the right amygdala and right fusiform gyrus, and decreased functional connectivity between the right medial temporal gyrus and left inferior frontal gyrus, which are key nodes of memory retrieval and cognitive control networks, respectively. These findings suggest a favourable effect of implicit regulation on instructed fear, which is subserved by less involvement of control-related brain mechanisms.


Accurate Decoding of Imagined and Heard Melodies.

  • Giovanni M Di Liberto‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Music perception requires the human brain to process a variety of acoustic and music-related properties. Recent research used encoding models to tease apart and study the various cortical contributors to music perception. To do so, such approaches study temporal response functions that summarise the neural activity over several minutes of data. Here we tested the possibility of assessing the neural processing of individual musical units (bars) with electroencephalography (EEG). We devised a decoding methodology based on a maximum correlation metric across EEG segments (maxCorr) and used it to decode melodies from EEG based on an experiment where professional musicians listened and imagined four Bach melodies multiple times. We demonstrate here that accurate decoding of melodies in single-subjects and at the level of individual musical units is possible, both from EEG signals recorded during listening and imagination. Furthermore, we find that greater decoding accuracies are measured for the maxCorr method than for an envelope reconstruction approach based on backward temporal response functions (bTRF env ). These results indicate that low-frequency neural signals encode information beyond note timing, especially with respect to low-frequency cortical signals below 1 Hz, which are shown to encode pitch-related information. Along with the theoretical implications of these results, we discuss the potential applications of this decoding methodology in the context of novel brain-computer interface solutions.


Neural and Genetic Correlates of the Social Sharing of Happiness.

  • Masahiro Matsunaga‎ et al.
  • Frontiers in neuroscience‎
  • 2017‎

Happiness is regarded as one of the most fundamental human goals. Given recent reports that positive feelings are contagious (e.g., the presence of a happy person enhances others' happiness) because of the human ability to empathize (i.e., sharing emotions), empathic ability may be a key factor in increasing one's own subjective level of happiness. Based on previous studies indicating that a single nucleotide polymorphism in the serotonin 2A receptor gene [HTR2A rs6311 guanine (G) vs. adenine (A)] is associated with sensitivity to emotional stimuli and several mental disorders such as depression, we predicted that the polymorphism might be associated with the effect of sharing happiness. To elucidate the neural and genetic correlates of the effect of sharing happiness, we first performed functional magnetic resonance imaging (fMRI) during a "happy feelings" evocation task (emotional event imagination task), during which we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend experiencing a positive-valence event (presence or absence). We recruited young adult women for this fMRI study because empathic ability may be higher in women than in men. Participants felt happier (p < 0.01) and the mentalizing/theory-of-mind network, which spans the medial prefrontal cortex, temporoparietal junction, temporal poles, and precuneus, was significantly more active (p < 0.05) in the presence condition than in the absence condition regardless of event valence. Moreover, participants with the GG (p < 0.01) and AG (p < 0.05) genotypes of HTR2A experienced happier feelings as well as greater activation of a part of the mentalizing/theory-of-mind network (p < 0.05) during empathy for happiness (neutral/presence condition) than those with the AA genotype. In a follow-up study with a vignette-based questionnaire conducted in a relatively large sample, male and female participants were presented with the same imagined events wherein their valence and the presence of a friend were manipulated. Results showed genetic differences in happiness-related empathy regardless of sex (p < 0.05). Findings suggest that HTR2A polymorphisms are associated with the effect of sharing happiness by modulating the activity of the mentalizing/theory-of-mind network.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: