Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

The Arabidopsis Receptor Kinase IRK Is Polarized and Represses Specific Cell Divisions in Roots.

  • Roya Campos‎ et al.
  • Developmental cell‎
  • 2020‎

Development of multicellular organisms requires coordination of cell division and differentiation across tissues. In plants, directional signaling, and implicitly cell polarity, is proposed to participate in this coordination; however, mechanistic links between intercellular signaling, cell polarity, and cellular organization remain unclear. Here, we investigate the localization and function of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) in root development. We find that IRK-GFP localizes to the outer plasma membrane domain in endodermal cells but localizes to different domains in other cell types. Our results suggest that IRK localization is informed locally by adjacent cell types. irk mutants have excess cell divisions in the ground tissue stem cells and endodermis, indicating IRK functions to maintain tissue organization through inhibition of specific cell divisions. We predict that IRK perceives a directional cue that negatively regulates these cell divisions, thus linking intercellular signaling and cell polarity with the control of oriented cell divisions during development.


A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis.

  • Feng-Liu Wang‎ et al.
  • Developmental cell‎
  • 2021‎

Organismal homeostasis of the essential ion K+ requires sensing of its availability, efficient uptake, and defined distribution. Understanding plant K+ nutrition is essential to advance sustainable agriculture, but the mechanisms underlying K+ sensing and the orchestration of downstream responses have remained largely elusive. Here, we report where plants sense K+ deprivation and how this translates into spatially defined ROS signals to govern specific downstream responses. We define the organ-scale K+ pattern of roots and identify a postmeristematic K+-sensing niche (KSN) where rapid K+ decline and Ca2+ signals coincide. Moreover, we outline a bifurcating low-K+-signaling axis of CIF peptide-activated SGN3-LKS4/SGN1 receptor complexes that convey low-K+-triggered phosphorylation of the NADPH oxidases RBOHC, RBOHD, and RBOHF. The resulting ROS signals simultaneously convey HAK5 K+ uptake-transporter induction and accelerated Casparian strip maturation. Collectively, these mechanisms synchronize developmental differentiation and transcriptome reprogramming for maintaining K+ homeostasis and optimizing nutrient foraging by roots.


Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice.

  • Mauricio A Reynoso‎ et al.
  • Developmental cell‎
  • 2022‎

Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.


Microtubules promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading onto ARGONAUTE1 in Arabidopsis.

  • Lusheng Fan‎ et al.
  • Developmental cell‎
  • 2022‎

Mobile microRNAs (miRNAs) serve as local and long-distance signals in the developmental patterning and stress responses in plants. However, mechanisms governing the non-cell autonomous activities of miRNAs remain elusive. Here, we show that mutations that disrupt microtubule dynamics are specifically defective for the non-cell autonomous actions of mobile miRNAs, including miR165/6 that is produced in the endodermis and moves to the vasculature to pattern xylem cell fates in Arabidopsis roots. We show that KTN1, a subunit of a microtubule-severing enzyme, is required in source cells to inhibit the loading of miR165/6 into ARGONUATE1 (AGO1), which is cell autonomous, to enable the miRNA to exit the cell. Microtubule disruption enhances the association of miR165/6 with AGO1 in the cytoplasm. These findings suggest that although cell-autonomous miRNAs load onto AGO1 in the nucleus, the cytoplasmic AGO1 loading of mobile miRNAs is a key step regulated by microtubules to promote the range of miRNA cell-to-cell movement.


The soil emergence-related transcription factor PIF3 controls root penetration by interacting with the receptor kinase FER.

  • Fan Xu‎ et al.
  • Developmental cell‎
  • 2024‎

The cotyledons of etiolated seedlings from terrestrial flowering plants must emerge from the soil surface, while roots must penetrate the soil to ensure plant survival. We show here that the soil emergence-related transcription factor PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) controls root penetration via transducing external signals perceived by the receptor kinase FERONIA (FER) in Arabidopsis thaliana. The loss of FER function in Arabidopsis and soybean (Glycine max) mutants resulted in a severe defect in root penetration into agar medium or hard soil. Single-cell RNA sequencing (scRNA-seq) profiling of Arabidopsis roots identified a distinct cell clustering pattern, especially for root cap cells, and identified PIF3 as a FER-regulated transcription factor. Biochemical, imaging, and genetic experiments confirmed that PIF3 is required for root penetration into soil. Moreover, FER interacted with and stabilized PIF3 to modulate the expression of mechanosensitive ion channel PIEZO and the sloughing of outer root cap cells.


Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability.

  • Jens Müller‎ et al.
  • Developmental cell‎
  • 2015‎

Plant root development is informed by numerous edaphic cues. Phosphate (Pi) availability impacts the root system architecture by adjusting meristem activity. However, the sensory mechanisms monitoring external Pi status are elusive. Two functionally interacting Arabidopsis genes, LPR1 (ferroxidase) and PDR2 (P5-type ATPase), are key players in root Pi sensing, which is modified by iron (Fe) availability. We show that the LPR1-PDR2 module facilitates, upon Pi limitation, cell-specific apoplastic Fe and callose deposition in the meristem and elongation zone of primary roots. Expression of cell-wall-targeted LPR1 determines the sites of Fe accumulation as well as callose production, which interferes with symplastic communication in the stem cell niche, as demonstrated by impaired SHORT-ROOT movement. Antagonistic interactions of Pi and Fe availability control primary root growth via meristem-specific callose formation, likely triggered by LPR1-dependent redox signaling. Our results link callose-regulated cell-to-cell signaling in root meristems to the perception of an abiotic cue.


The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells.

  • Viola Willemsen‎ et al.
  • Developmental cell‎
  • 2008‎

Because plant cells do not migrate, cell division planes are crucial determinants of plant cellular architecture. In Arabidopsis roots, stringent control of cell divisions leads to a virtually invariant division pattern, including those that create new tissue layers. However, the mechanisms that control oriented cell divisions are hitherto poorly understood. Here, we reveal one such mechanism in which FEZ and SOMBRERO (SMB), two plant-specific NAC-domain transcription factors, control the delicately tuned reorientation and timing of cell division in a subset of stem cells. FEZ is expressed in root cap stem cells, where it promotes periclinal, root cap-forming cell divisions. In contrast, SMB negatively regulates FEZ activity, repressing stem cell-like divisions in the root cap daughter cells. FEZ becomes expressed in predivision stem cells, induces oriented cell division, and activates expression of its negative regulator, SMB, thus generating a feedback loop for controlled switches in cell division plane.


TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture.

  • Marta Michniewicz‎ et al.
  • Developmental cell‎
  • 2019‎

Developmental processes that control root system architecture are critical for soil exploration by plants, allowing for uptake of water and nutrients. Conversion of the auxin precursor indole-3-butyric acid (IBA) to active auxin (indole-3-acetic acid; IAA) modulates lateral root formation. However, mechanisms governing IBA-to-IAA conversion have yet to be elucidated. We identified TRANSPORTER OF IBA1 (TOB1) as a vacuolar IBA transporter that limits lateral root formation. Moreover, TOB1, which is transcriptionally regulated by the phytohormone cytokinin, is necessary for the ability of cytokinin to exert inhibitory effects on lateral root production. The increased production of lateral roots in tob1 mutants, TOB1 transport of IBA into the vacuole, and cytokinin-regulated TOB1 expression provide a mechanism linking cytokinin signaling and IBA contribution to the auxin pool to tune root system architecture.


Arabidopsis regeneration from multiple tissues occurs via a root development pathway.

  • Kaoru Sugimoto‎ et al.
  • Developmental cell‎
  • 2010‎

Unlike most animal cells, plant cells can easily regenerate new tissues from a wide variety of organs when properly cultured. The common elements that provide varied plant cells with their remarkable regeneration ability are still largely unknown. Here we describe the initial process of Arabidopsis in vitro regeneration, where a pluripotent cell mass termed callus is induced. We demonstrate that callus resembles the tip of a root meristem, even if it is derived from aerial organs such as petals, which clearly shows that callus formation is not a simple reprogramming process backward to an undifferentiated state as widely believed. Furthermore, callus formation in roots, cotyledons, and petals is blocked in mutant plants incapable of lateral root initiation. It thus appears that the ectopic activation of a lateral root development program is a common mechanism in callus formation from multiple organs.


Symplastic intercellular connectivity regulates lateral root patterning.

  • Yoselin Benitez-Alfonso‎ et al.
  • Developmental cell‎
  • 2013‎

Cell-to-cell communication coordinates the behavior of individual cells to establish organ patterning and development. Although mobile signals are known to be important in lateral root development, the role of plasmodesmata (PD)-mediated transport in this process has not been investigated. Here, we show that changes in symplastic connectivity accompany and regulate lateral root organogenesis in Arabidopsis. This connectivity is dependent upon callose deposition around PD affecting molecular flux through the channel. Two plasmodesmal-localized β-1,3 glucanases (PdBGs) were identified that regulate callose accumulation and the number and distribution of lateral roots. The fundamental role of PD-associated callose in this process was illustrated by the induction of similar phenotypes in lines with altered callose turnover. Our results show that regulation of callose and cell-to-cell connectivity is critical in determining the pattern of lateral root formation, which influences root architecture and optimal plant performance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: