Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Inherited nuclear pore substructures template post-mitotic pore assembly.

  • Yi-Ying Chou‎ et al.
  • Developmental cell‎
  • 2021‎

Nuclear envelope assembly during late mitosis includes rapid formation of several thousand complete nuclear pore complexes (NPCs). This efficient use of NPC components (nucleoporins or "NUPs") is essential for ensuring immediate nucleocytoplasmic communication in each daughter cell. We show that octameric subassemblies of outer and inner nuclear pore rings remain intact in the mitotic endoplasmic reticulum (ER) after NPC disassembly during prophase. These "inherited" subassemblies then incorporate into NPCs during post-mitotic pore formation. We further show that the stable subassemblies persist through multiple rounds of cell division and the accompanying rounds of NPC mitotic disassembly and post-mitotic assembly. De novo formation of NPCs from newly synthesized NUPs during interphase will then have a distinct initiation mechanism. We postulate that a yet-to-be-identified modification marks and "immortalizes" one or more components of the specific octameric outer and inner ring subcomplexes that then template post-mitotic NPC assembly during subsequent cell cycles.


Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts.

  • Lu Han‎ et al.
  • Developmental cell‎
  • 2022‎

Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.


A change in nuclear pore complex composition regulates cell differentiation.

  • Maximiliano A D'Angelo‎ et al.
  • Developmental cell‎
  • 2012‎

Nuclear pore complexes (NPCs) are built from ∼30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.


Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

  • Lisa Martino‎ et al.
  • Developmental cell‎
  • 2017‎

In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.


Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins.

  • Monika I Linder‎ et al.
  • Developmental cell‎
  • 2017‎

During interphase, the nuclear envelope (NE) serves as a selective barrier between cytosol and nucleoplasm. When vertebrate cells enter mitosis, the NE is dismantled in the process of nuclear envelope breakdown (NEBD). Disassembly of nuclear pore complexes (NPCs) is a key aspect of NEBD, required for NE permeabilization and formation of a cytoplasmic mitotic spindle. Here, we show that both CDK1 and polo-like kinase 1 (PLK1) support mitotic NPC disintegration by hyperphosphorylation of Nup98, the gatekeeper nucleoporin, and Nup53, a central nucleoporin linking the inner NPC scaffold to the pore membrane. Multisite phosphorylation of Nup53 critically contributes to its liberation from its partner nucleoporins, including the pore membrane protein NDC1. Initial steps of NPC disassembly in semi-permeabilized cells can be reconstituted by a cocktail of mitotic kinases including cyclinB-CDK1, NIMA, and PLK1, suggesting that the unzipping of nucleoporin interactions by protein phosphorylation is an important principle underlying mitotic NE permeabilization.


Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

  • Baobing Zhao‎ et al.
  • Developmental cell‎
  • 2016‎

Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice.


Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis.

  • Weihong Wang‎ et al.
  • Developmental cell‎
  • 2022‎

Although overwhelming plasma membrane integrity loss leads to cell lysis and necrosis, cells can tolerate a limited level of plasma membrane damage, undergo ESCRT-III-mediated repair, and survive. Here, we find that cells which undergo limited plasma membrane damage from the pore-forming actions of MLKL, GSDMD, perforin, or detergents experience local activation of PKCs through Ca2+ influx at the damage sites. S660-phosphorylated PKCs subsequently activate the TAK1/IKKs axis and RelA/Cux1 complex to trigger chemokine expressions. We observe that in late-stage cancers, cells with active MLKL show expression of CXCL8. Similar expression induction is also found in ischemia-injured kidneys. Chemokines generated in this manner are also indispensable for recruiting immune cells to the dead and dying cells. This plasma membrane integrity-sensing pathway is similar to the well-established yeast cell wall integrity signaling pathway at molecular level, and this suggests an evolutionary conserved mechanism to respond to the cellular barrier damage.


Cdk1 Activates Pre-mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells.

  • Alexandre D Baffet‎ et al.
  • Developmental cell‎
  • 2015‎

Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell-cycle regulated and identify the trigger mechanism for apical nuclear migration in the brain.


A tubule-sheet continuum model for the mechanism of nuclear envelope assembly.

  • Gengjing Zhao‎ et al.
  • Developmental cell‎
  • 2023‎

Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.


The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos.

  • Richik Nilay Mukherjee‎ et al.
  • Developmental cell‎
  • 2020‎

Nuclear size plays pivotal roles in gene expression, embryo development, and disease. A central hypothesis in organisms ranging from yeast to vertebrates is that nuclear size scales to cell size. This implies that nuclei may reach steady-state sizes set by limiting cytoplasmic pools of size-regulating components. By monitoring nuclear dynamics in early sea urchin embryos, we found that nuclei undergo substantial growth in each interphase, reaching a maximal size prior to mitosis that declined steadily over the course of development. Manipulations of cytoplasmic volume through multiple chemical and physical means ruled out cell size as a major determinant of nuclear size and growth. Rather, our data suggest that the perinuclear endoplasmic reticulum, accumulated through dynein activity, serves as a limiting membrane pool that sets nuclear surface growth rate. Partitioning of this local pool at each cell division modulates nuclear growth kinetics and dictates size scaling throughout early development.


Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex.

  • Marcela Raices‎ et al.
  • Developmental cell‎
  • 2017‎

Nuclear pore complexes (NPCs) are multiprotein channels connecting the nucleus with the cytoplasm. NPCs have been shown to have tissue-specific composition, suggesting that their function can be specialized. However, the physiological roles of NPC composition changes and their impacts on cellular processes remain unclear. Here we show that the addition of the Nup210 nucleoporin to NPCs during myoblast differentiation results in assembly of an Mef2C transcriptional complex required for efficient expression of muscle structural genes and microRNAs. We show that this NPC-localized complex is essential for muscle growth, myofiber maturation, and muscle cell survival and that alterations in its activity result in muscle degeneration. Our findings suggest that NPCs regulate the activity of functional gene groups by acting as scaffolds that promote the local assembly of tissue-specific transcription complexes and show how nuclear pore composition changes can be exploited to regulate gene expression at the nuclear periphery.


Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery.

  • Donna Garvey Brickner‎ et al.
  • Developmental cell‎
  • 2012‎

Active genes in yeast can be targeted to the nuclear periphery through interaction of cis-acting "DNA zip codes" with the nuclear pore complex. We find that genes with identical zip codes cluster together. This clustering was specific; pairs of genes that were targeted to the nuclear periphery by different zip codes did not cluster together. Insertion of two different zip codes (GRS I or GRS III) at an ectopic site induced clustering with endogenous genes that have that zip code. Targeting to the nuclear periphery and interaction with the nuclear pore is a prerequisite for gene clustering, but clustering can be maintained in the nucleoplasm. Finally, we find that the Put3 transcription factor recognizes the GRS I zip code to mediate both targeting to the NPC and interchromosomal clustering. These results suggest that zip-code-mediated clustering of genes at the nuclear periphery influences the three-dimensional arrangement of the yeast genome.


Nuclear import carrier Hikeshi cooperates with HSP70 to promote murine oligodendrocyte differentiation and CNS myelination.

  • Li Li‎ et al.
  • Developmental cell‎
  • 2023‎

Dysregulation of factors in nucleocytoplasmic transport is closely linked to neural developmental diseases. Mutation in Hikeshi, encoding a nonconventional nuclear import carrier of heat shock protein 70 family (HSP70s), leads to inherited leukodystrophy; however, the pathological mechanisms remain elusive. Here, we showed that Hikeshi is essential for central nervous system (CNS) myelination. Deficiency of Hikeshi, which is observed in inherited leukodystrophy patients, resulted in murine oligodendrocyte maturation arrest. Hikeshi is required for nuclear translocation of HSP70s upon differentiation. Nuclear-localized HSP70 promotes murine oligodendrocyte differentiation and remyelination after white matter injury. Mechanistically, HSP70s interacted with SOX10 in the nucleus and protected it from E3 ligase FBXW7-mediated ubiquitination degradation. Importantly, we discovered that Hikeshi-dependent hyperthermia therapy, which induces nuclear import of HSP70s, promoted oligodendrocyte differentiation and remyelination following in vivo demyelinating injury. Overall, these findings demonstrate that Hikeshi-mediated nuclear translocation of HSP70s is essential for myelinogenesis and provide insights into pathological mechanisms of Hikeshi-related leukodystrophy.


Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia.

  • Florencia Del Viso‎ et al.
  • Developmental cell‎
  • 2016‎

Human genomics is identifying candidate genes for congenital heart disease (CHD), but discovering the underlying mechanisms remains challenging. In a patient with CHD and heterotaxy (Htx), a disorder of left-right patterning, we previously identified a duplication in Nup188. However, a mechanism to explain how a component of the nuclear pore complex (NPC) could cause Htx/CHD was undefined. Here, we show that knockdown of Nup188 or its binding partner Nup93 leads to a loss of cilia during embryonic development while leaving NPC function largely intact. Many data, including the localization of endogenous Nup188/93 at cilia bases, support their direct role at cilia. Super-resolution imaging of Nup188 shows two barrel-like structures with dimensions and organization incompatible with an NPC-like ring, arguing against a proposed "ciliary pore complex." We suggest that the nanoscale organization and function of nucleoporins are context dependent in a way that is required for the structure of the heart.


Inhomogeneous mechanotransduction defines the spatial pattern of apoptosis-induced compensatory proliferation.

  • Takumi Kawaue‎ et al.
  • Developmental cell‎
  • 2023‎

The number of cells in tissues is controlled by cell division and cell death, and its misregulation could lead to pathological conditions such as cancer. To maintain the cell numbers, a cell-elimination process called apoptosis also stimulates the proliferation of neighboring cells. This mechanism, apoptosis-induced compensatory proliferation, was originally described more than 40 years ago. Although only a limited number of the neighboring cells need to divide to compensate for the apoptotic cell loss, the mechanisms that select cells to divide have remained elusive. Here, we found that spatial inhomogeneity in Yes-associated protein (YAP)-mediated mechanotransduction in neighboring tissues determines the inhomogeneity of compensatory proliferation in Madin-Darby canine kidney (MDCK) cells. Such inhomogeneity arises from the non-uniform distribution of nuclear size and the non-uniform pattern of mechanical force applied to neighboring cells. Our findings from a mechanical perspective provide additional insight into how tissues precisely maintain homeostasis.


RSK-MASTL Pathway Delays Meiotic Exit in Mouse Zygotes to Ensure Paternal Chromosome Stability.

  • Shou Soeda‎ et al.
  • Developmental cell‎
  • 2018‎

During vertebrate fertilization, sperm chromatin remodeling occurs concomitantly with maternal chromosome segregation at anaphase II, leading to simultaneous formation of two pronuclei. In mammals, these processes take much longer than in other vertebrates. Here, we explore the molecular basis and physiological importance of this mammalian-specific temporal regulation using mouse oocytes. We demonstrate the involvement of protein phosphatase in temporal regulation. Early onset of pronuclear formation causes paternal-biased abnormalities in pronuclear morphology and chromosome segregation at the first mitosis. After oocyte activation, CDK1-MASTL-ENSA, a protein phosphatase 2A-suppressive pathway, remains active despite the absence of cyclin B and contributes to delayed pronuclear formation. Sustained activation of MASTL involves ribosomal S6 kinase (RSK)-mediated phosphorylation of Thr297, which is conserved only among mammalian MASTLs. Our findings reveal the role of RSK in mouse oocytes, showing that the RSK-MASTL pathway allows mammalian-specific prolonged meiotic exit and ensures the faithful conversion from sperm to paternal pronuclei.


The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles in vivo.

  • Lin Zhang‎ et al.
  • Developmental cell‎
  • 2022‎

Curvature-sensing mechanisms assist proteins in executing particular actions on various membrane organelles. Here, we investigate the functional specificity of curvature-sensing amphipathic motifs in Caenorhabditis elegans through the study of endophilin, an endocytic protein for synaptic vesicle recycling. We generate chimeric endophilin proteins by replacing the endophilin amphipathic motif H0 with other curvature-sensing amphipathic motifs. We find that the role of amphipathic motifs cannot simply be extrapolated from the identity of their parental proteins. For example, the amphipathic motif of the nuclear pore complex protein NUP133 functionally replaces the synaptic role of endophilin H0. Interestingly, non-functional endophilin chimeras have similar defects-producing fewer synaptic vesicles but more endosomes-and this indicates that the curvature-sensing motifs in these chimeras have a common deficiency for reforming synaptic vesicles. Finally, we convert non-functional endophilin chimeras into functional proteins by changing the cationic property of amphipathic motifs, successfully reprogramming the functional specificity of curvature-sensing motifs in vivo.


Nucleoporin Seh1 controls murine neocortical development via transcriptional repression of p21 in neural stem cells.

  • Wenxiu Dai‎ et al.
  • Developmental cell‎
  • 2024‎

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: