Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 736 papers

Robust T Cell Response Toward Spike, Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated with Recovery in Critical COVID-19 Patients.

  • Constantin J Thieme‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

T cell immunity toward SARS-CoV-2 spike (S-), membrane (M-), and nucleocapsid (N-) proteins may define COVID-19 severity. Therefore, we compare the SARS-CoV-2-reactive T cell responses in moderate, severe, and critical COVID-19 patients and unexposed donors. Overlapping peptide pools of all three proteins induce SARS-CoV-2-reactive T cell response with dominance of CD4+ over CD8+ T cells and demonstrate interindividual immunity against the three proteins. M-protein induces the highest frequencies of CD4+ T cells, suggesting its relevance for diagnosis and vaccination. The T cell response of critical COVID-19 patients is robust and comparable or even superior to non-critical patients. Virus clearance and COVID-19 survival are not associated with either SARS-CoV-2 T cell kinetics or magnitude of T cell responses, respectively. Thus, our data do not support the hypothesis of insufficient SARS-CoV-2-reactive immunity in critical COVID-19. Conversely, it indicates that activation of differentiated memory effector T cells could cause hyperreactivity and immunopathogenesis in critical patients.


Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater.

  • Artem Nemudryi‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

SARS-CoV-2 has recently been detected in feces, which indicates that wastewater may be used to monitor viral prevalence in the community. Here, we use RT-qPCR to monitor wastewater for SARS-CoV-2 RNA over a 74-day time course. We show that changes in SARS-CoV-2 RNA concentrations follow symptom onset gathered by retrospective interview of patients but precedes clinical test results. In addition, we determine a nearly complete (98.5%) SARS-CoV-2 genome sequence from wastewater and use phylogenetic analysis to infer viral ancestry. Collectively, this work demonstrates how wastewater can be used as a proxy to monitor viral prevalence in the community and how genome sequencing can be used for genotyping viral strains circulating in a community.


Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases.

  • Alison Tarke‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens and precisely measure virus-specific CD4+ and CD8+ T cells, we study epitope-specific T cell responses of 99 convalescent coronavirus disease 2019 (COVID-19) cases. The SARS-CoV-2 proteome is probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of human leukocyte antigen (HLA) alleles for class II responses. For HLA class I, we study an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identify several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance are observed, which differ for CD4+ T cells, CD8+ T cells, and antibodies. The class I and class II epitopes are combined into epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4+ and CD8+ T cells.


Sensitive detection of total anti-Spike antibodies and isotype switching in asymptomatic and symptomatic individuals with COVID-19.

  • Yun Shan Goh‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Early detection of infection is crucial to limit the spread of coronavirus disease 2019 (COVID-19). Here we develop a flow cytometry-based assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antibodies in individuals with COVID-19. The assay detects specific immunoglobulin M (IgM), IgA, and IgG in individuals with COVID-19 and also acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response is significantly higher at a later stage of infection. Furthermore, asymptomatic individuals with COVID-19 also develop specific IgM, IgA, and IgG, with IgG1 being the most dominant subclass. Although the antibody levels are lower in asymptomatic infection, the assay is highly sensitive and detects 97% of asymptomatic infections. These findings demonstrate that the assay can be used for serological analysis of symptomatic and asymptomatic infections, which may otherwise remain undetected.


Tracking HIV Rebound following Latency Reversal Using Barcoded HIV.

  • Matthew D Marsden‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

HIV latency prevents cure of infection with antiretroviral therapy (ART) alone. One strategy for eliminating latently infected cells involves the induction of viral protein expression via latency-reversing agents (LRAs), allowing killing of host cells by viral cytopathic effects or immune effector mechanisms. Here, we combine a barcoded HIV approach and a humanized mouse model to study the effects of a designed, synthetic protein kinase C modulating LRA on HIV rebound. We show that administration of this compound during ART results in a delay in rebound once ART is stopped. Furthermore, the rebounding virus appears composed of a smaller number of unique barcoded viruses than occurs in control-treated animals, suggesting that some reservoir cells that would have contributed virus to the rebound process are eliminated by LRA administration. These data support the use of barcoded virus to study rebound and suggest that LRAs may be useful in HIV cure efforts.


AKR-001, an Fc-FGF21 Analog, Showed Sustained Pharmacodynamic Effects on Insulin Sensitivity and Lipid Metabolism in Type 2 Diabetes Patients.

  • Allegra Kaufman‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Experimental fibroblast growth factor 21 (FGF21) analogs can improve lipid profiles in patients with metabolic diseases. However, their effects on markers of insulin sensitivity appear to be minimal, potentially because of insufficient exposure. Systemic drug levels vary from sub-pharmacological to demonstrating pharmacodynamic effects but with dose-limiting adverse events. Here we report results from a phase 1 multiple ascending dose study of AKR-001, an Fc-FGF21 fusion protein engineered for sustained systemic pharmacologic exposure, in individuals with type 2 diabetes. With a half-life of 3-3.5 days, the peak-to-trough ratio under steady-state conditions is approximately 2 following QW dosing. AKR-001 appears to demonstrate pharmacodynamic effects on serum markers of insulin sensitivity and acceptable tolerability up to and including 70 mg QW. Positive trends in lipoprotein profile, including triglycerides, non-high-density lipoprotein (non-HDL) cholesterol, HDL-C, and apolipoproteins B and C3 are consistent with other FGF21 analogs. AKR-001's clinical profile supports further evaluation as a treatment for metabolic diseases.


Use of Patient Health Records to Quantify Drug-Related Pro-arrhythmic Risk.

  • Mark R Davies‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

There is an increasing expectation that computational approaches may supplement existing human decision-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing regulatory initiatives propose use of high-throughput in vitro data combined with computational models for calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes. Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how this changes depending on patient characteristics. First, we propose that such datasets are a complementary resource for determining relative drug risk and assessing the performance of cardiac safety models for regulatory use. Second, the results suggest important determinants for appropriate stratification of patients and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.


Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing.

  • Hugo Bernard‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes.


A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea.

  • Sunaina Rengarajan‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Stress is a known trigger for flares of inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS); however, this process is not well understood. Here, we find that restraint stress in mice leads to signs of diarrhea, fecal dysbiosis, and a barrier defect via the opening of goblet-cell associated passages. Notably, stress increases host immunity to gut bacteria as assessed by immunoglobulin A (IgA)-bound gut bacteria. Stress-induced microbial changes are necessary and sufficient to elicit these effects. Moreover, similar to mice, many diarrhea-predominant IBS (IBS-D) patients from two cohorts display increased antibacterial immunity as assessed by IgA-bound fecal bacteria. This antibacterial IgA response in IBS-D correlates with somatic symptom severity and was distinct from healthy controls or IBD patients. These findings suggest that stress may play an important role in patients with IgA-associated IBS-D by disrupting the intestinal microbial community that alters gastrointestinal function and host immunity to commensal bacteria.


Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability.

  • Jason E McDermott‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.


Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans.

  • Madhubanti Basu‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.


Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma.

  • Liana Nobre‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions.

  • Andrea R Shiakolas‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Increased p53 signaling impairs neural differentiation in HUWE1-promoted intellectual disabilities.

  • Rossana Aprigliano‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Essential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in HUWE1 cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes. By focusing on Juberg-Marsidi syndrome (JMS), one of the severest XLIDs, we show that increased p53 signaling results from p53 accumulation caused by HUWE1 p.G4310R destabilization. This further alters cell-cycle progression and proliferation in JMS cells. Modeling of JMS neurodevelopment reveals majorly impaired neural differentiation accompanied by increased p53 signaling. The neural differentiation defects can be successfully rescued by reducing p53 levels and restoring the expression of p53 target genes, in particular CDKN1A/p21. In summary, our findings suggest that increased p53 signaling underlies HUWE1-promoted syndromes and impairs XLID JMS neural differentiation.


Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants.

  • Mel Lina Pinsach-Abuin‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.


Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology.

  • Nikhil J Pandya‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Rapid decline of neutralizing antibodies is associated with decay of IgM in adults recovered from mild COVID-19.

  • Whitney E Harrington‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection.


Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies.

  • Alexandra C Willcox‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions.


Uncoupling of gene expression from copy number presents therapeutic opportunities in aneuploid cancers.

  • Vakul Mohanty‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Uncoupling of mRNA expression from copy number (UECN) might be a strategy for cancer cells to a tolerate high degree of aneuploidy. To test the extent and role of UECN across cancers, we perform integrative multiomic analysis of The Cancer Genome Atlas (TCGA) dataset, encompassing ∼5,000 individual tumors. We find UECN is common in cancers and is associated with increased oncogenic signaling, proliferation, and immune suppression. UECN appears to be orchestrated by complex regulatory changes, with transcription factors (TFs) playing a prominent role. To further dissect the regulatory mechanisms, we develop a systems-biology approach to identify candidate TFs, which could serve as targets to disrupt UECN and reduce tumor fitness. Applying our approach to TCGA data, we identify 21 putative targets, 42.8% of which are validated by independent sources. Together, our study indicates that UECN is likely an important mechanism in development of aneuploid tumors and might be therapeutically targetable.


Neutralizing antibodies against Epstein-Barr virus infection of B cells can protect from oral viral challenge in the rhesus macaque animal model.

  • Janine Mühe‎ et al.
  • Cell reports. Medicine‎
  • 2021‎

Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCVs) from nonhuman primates are transmitted through oral secretions, penetrate the mucosal epithelium, and establish persistent infection in B cells. To determine whether neutralizing antibodies against epithelial or B cell infection could block oral transmission and persistent LCV infection, we use rhesus macaques, the most accurate animal model for EBV infection by faithfully reproducing acute and persistent infection in humans. Naive animals are infused with monoclonal antibodies neutralizing epithelial cell infection or B cell infection and then challenged orally with recombinant rhesus LCV. Our data show that high-titer B cell-neutralizing antibodies alone, but not epithelial cell-neutralizing antibodies, can provide complete protection of rhesus macaques from oral LCV challenge, but not in all hosts. Thus, neutralizing antibodies against B cell infection are important targets for EBV vaccine development, but they may not be sufficient.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: