Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 328 papers

Highly efficient manipulation of nervous system gene expression with NEPTUNE.

  • Katrin Mangold‎ et al.
  • Cell reports methods‎
  • 2021‎

Genetic loss and gain of function in mice have typically been studied by using knockout or knockin mice that take months to years to generate. To address this problem for the nervous system, we developed NEPTUNE (NEural Plate Targeting by in Utero NanoinjEction) to rapidly and flexibly transduce the neural plate with virus prior to neurulation, and thus manipulate the future nervous system. Stable integration in >95% of cells in the brain enabled long-term overexpression, and conditional expression was achieved by using cell-type-specific MiniPromoters. Knockdown of Olig2 by using NEPTUNE recapitulated the phenotype of Olig2 -/- embryos. We used NEPTUNE to investigate Sptbn2, mutations in which cause spinocerebellar ataxia type 5. Sptbn2 knockdown induced dose-dependent defects in the neural tube, embryonic turning, and abdominal wall closure, previously unreported functions for Sptbn2. NEPTUNE thus offers a rapid and cost-effective technique to test gene function in the nervous system and can reveal phenotypes incompatible with life.


Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis.

  • Kenong Su‎ et al.
  • Cell reports methods‎
  • 2021‎

Identifying biomarkers to predict the clinical outcomes of individual patients is a fundamental problem in clinical oncology. Multiple single-gene biomarkers have already been identified and used in clinics. However, multiple oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis. Additionally, the efficacy of single-gene biomarkers is limited by the extensively variable expression levels measured by high-throughput assays. In this study, we hypothesize that in individual tumor samples, the disruption of transcription homeostasis in key pathways or gene sets plays an important role in tumorigenesis and has profound implications for the patient's clinical outcome. We devised a computational method named iPath to identify, at the individual-sample level, which pathways or gene sets significantly deviate from their norms. We conducted a pan-cancer analysis and demonstrated that iPath is capable of identifying highly predictive biomarkers for clinical outcomes, including overall survival, tumor subtypes, and tumor-stage classifications.


A simple and robust method for simultaneous dual-omics profiling with limited numbers of cells.

  • Ruifang Li‎ et al.
  • Cell reports methods‎
  • 2021‎

Deciphering epigenetic regulation of gene expression requires measuring the epigenome and transcriptome jointly. Single-cell multi-omics technologies have been developed for concurrent profiling of chromatin accessibility and gene expression. However, multi-omics profiling of low-input bulk samples remains challenging. Therefore, we developed low-input ATAC&mRNA-seq, a simple and robust method for studying the role of chromatin structure in gene regulation in a single experiment with thousands of cells, to maximize insights from limited input material by obtaining ATAC-seq and mRNA-seq data simultaneously from the same cells with data quality comparable to that of conventional mono-omics assays. Integrative data analysis revealed similar strong association between promoter accessibility and gene expression when using the data of low-input ATAC&mRNA-seq as when using single-assay data, underscoring the accuracy and reliability of our dual-omics assay to generate both datum types simultaneously with just thousands of cells. We envision our method to be widely applied in many biological disciplines with limited materials.


A molecular toolbox for ADP-ribosyl binding proteins.

  • Sven T Sowa‎ et al.
  • Cell reports methods‎
  • 2021‎

Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or viral infections, making them attractive drug targets. We present a robust and accessible assay applicable to both hydrolyzing or non-hydrolyzing binders of mono- and poly-ADP-ribosyl groups. This technology relies on a C-terminal tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of cysteine-linked mono- and poly-ADP-ribosyl groups or analogs. By fusing the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we generate robust FRET partners and confirm the interaction with 22 known ADP-ribosyl binders. The applicability for high-throughput screening of inhibitors is demonstrated with the SARS-CoV-2 nsp3 macrodomain, for which we identify suramin as a moderate-affinity yet non-specific inhibitor. High-affinity ADP-ribosyl binders fused to nanoluciferase complement this technology, enabling simple blot-based detection of ADP-ribosylated proteins. All these tools can be produced in Escherichia coli and will help in ADP-ribosylation research and drug discovery.


All-optical inter-layers functional connectivity investigation in the mouse retina.

  • Giulia Lia Beatrice Spampinato‎ et al.
  • Cell reports methods‎
  • 2022‎

We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.


Improved Sendai viral system for reprogramming to naive pluripotency.

  • Akira Kunitomi‎ et al.
  • Cell reports methods‎
  • 2022‎

Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine.


Elongation factor-specific capture of RNA polymerase II complexes.

  • Lea H Gregersen‎ et al.
  • Cell reports methods‎
  • 2022‎

Transcription of protein-coding genes is regulated by dynamic association of co-factors with RNA polymerase II (RNAPII). The function of these factors and their relationship with RNAPII is often poorly understood. Here, we present an approach for elongation-factor-specific mNET capture (ELCAP) of RNAPII complexes for sequencing and mass spectrometry analysis aimed at investigating the function of such RNAPII regulatory proteins. As proof of principle, we apply ELCAP to the RNAPII-associated proteins SCAF4 and SCAF8, which share an essential role as mRNA anti-terminators but have individual roles at the 3' end of genes. Mass spectrometry analysis shows that both SCAF4 and SCAF8 are part of RNAPII elongation complexes containing 3' end processing factors but depleted of splicing components. Importantly, the ELCAP sequencing (ELCAP-seq) profiles of SCAF4- and SCAF8-RNAPII complexes nicely reflect their function as mRNA-anti-terminators and their competing functions at the end of genes, where they prevent or promote transcriptional readthrough.


Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates.

  • Derek Zaraza‎ et al.
  • Cell reports methods‎
  • 2022‎

Advances in optical technology have revolutionized studies of brain function in freely behaving mice. Here, we describe an optical imaging and stimulation device for use in primates that easily attaches to an intracranial chamber. It consists of affordable commercially available or 3D-printed components: a monochromatic camera, a small standard lens, a wireless μLED stimulator powered by an induction coil, and an LED array for illumination. We show that the intrinsic imaging performance of this device is comparable to a standard benchtop system in revealing the functional organization of the visual cortex for awake macaques in a primate chair or under anesthesia. Imaging revealed neural modulatory effects of wireless focal optogenetic stimulation aimed at identified functional domains. With a 1 to 2 cm field of view, 100× larger than previously used in primates without head restraint, our device permits widefield optical imaging and optogenetic stimulation for ethological studies in primates.


Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality.

  • Yijie Geng‎ et al.
  • Cell reports methods‎
  • 2023‎

It has been a major challenge to systematically evaluate and compare how pharmacological perturbations influence social behavioral outcomes. Although some pharmacological agents are known to alter social behavior, precise description and quantification of such effects have proven difficult. We developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep learning to characterize sociality at high resolution. High-dimensional and dynamic social behavioral phenotypes are automatically classified using this method. By screening a neuroactive compound library, we found that different classes of chemicals evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic-acid-induced zebrafish autism model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social behavior and discovering novel social-modulatory compounds.


Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities.

  • Guido Zampieri‎ et al.
  • Cell reports methods‎
  • 2023‎

Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for exploring biological hypotheses in microbial systems. However, although most microorganisms are unculturable, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we developed an approach for modeling microbial activity and interactions that leverages the reconstruction of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we designed a method for condition-specific metabolic modeling of microbial communities through the integration of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion consortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn's disease, identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome scale.


Unlocking SARS-CoV-2 detection in low- and middle-income countries.

  • Roberto Alcántara‎ et al.
  • Cell reports methods‎
  • 2021‎

Low- and middle-income countries (LMICs) are significantly affected by SARS-CoV-2, partially due to their limited capacity for local production and implementation of molecular testing. Here, we provide detailed methods and validation of a molecular toolkit that can be readily produced and deployed using laboratory equipment available in LMICs. Our results show that lab-scale production of enzymes and nucleic acids can supply over 50,000 tests per production batch. The optimized one-step RT-PCR coupled to CRISPR-Cas12a-mediated detection showed a limit of detection of 102 ge/μL in a turnaround time of 2 h. The clinical validation indicated an overall sensitivity of 80%-88%, while for middle and high viral load samples (Cq ≤ 31) the sensitivity was 92%-100%. The specificity was 96%-100% regardless of viral load. Furthermore, we show that the toolkit can be used with the mobile laboratory Bento Lab, potentially enabling LMICs to implement detection services in unattended remote regions.


Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection.

  • Jiarui Wang‎ et al.
  • Cell reports methods‎
  • 2022‎

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Using the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multi-color RNA immunoFISH and visualized their localization patterns within the cell. The 10-nm resolution achieved by our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive imaging framework that will enable future investigations of coronavirus fundamental biology and therapeutic effects.


Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations.

  • Jaewon Choi‎ et al.
  • Cell reports methods‎
  • 2021‎

Oncogenic mutations in KRAS can be recognized by T cells on specific class I human leukocyte antigen (HLA-I) molecules, leading to tumor control. To date, the discovery of T cell targets from KRAS mutations has relied on occasional T cell responses in patient samples or the use of transgenic mice. To overcome these limitations, we have developed a systematic target discovery and validation pipeline. We evaluate the presentation of mutant KRAS peptides on individual HLA-I molecules using targeted mass spectrometry and identify 13 unpublished KRASG12C/D/R/V mutation/HLA-I pairs and nine previously described pairs. We assess immunogenicity, generating T cell responses to nearly all targets. Using cytotoxicity assays, we demonstrate that KRAS-specific T cells and T cell receptors specifically recognize endogenous KRAS mutations. The discovery and validation of T cell targets from KRAS mutations demonstrate the potential for this pipeline to aid the development of immunotherapies for important cancer targets.


Discovery and validation of human genomic safe harbor sites for gene and cell therapies.

  • Erik Aznauryan‎ et al.
  • Cell reports methods‎
  • 2022‎

Existing approaches to therapeutic gene transfer are marred by the transient nature of gene expression following non-integrative gene delivery and by safety concerns due to the random mechanism of viral-mediated genomic insertions. The disadvantages of these methods encourage future research in identifying human genomic sites that allow for durable and safe expression of genes of interest. We conducted a bioinformatic search followed by the experimental characterization of human genomic sites, identifying two that demonstrated the stable expression of integrated reporter and therapeutic genes without malignant changes to the cellular transcriptome. The cell-type agnostic criteria used in our bioinformatic search suggest widescale applicability of identified sites for engineering of a diverse range of tissues for clinical and research purposes, including modified T cells for cancer therapy and engineered skin to ameliorate inherited diseases and aging. In addition, the stable and robust levels of gene expression from identified sites allow for the industry-scale biomanufacturing of proteins in human cells.


A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics.

  • Corin F Otesteanu‎ et al.
  • Cell reports methods‎
  • 2021‎

The application of machine learning approaches to imaging flow cytometry (IFC) data has the potential to transform the diagnosis of hematological diseases. However, the need for manually labeled single-cell images for machine learning model training has severely limited its clinical application. To address this, we present iCellCnn, a weakly supervised deep learning approach for label-free IFC-based blood diagnostics. We demonstrate the capability of iCellCnn to achieve diagnosis of Sézary syndrome (SS) from patient samples on the basis of bright-field IFC images of T cells obtained after fluorescence-activated cell sorting of human peripheral blood mononuclear cell specimens. With a sample size of four healthy donors and five SS patients, iCellCnn achieved a 100% classification accuracy. As iCellCnn is not restricted to the diagnosis of SS, we expect such weakly supervised approaches to tap the diagnostic potential of IFC by providing automatic data-driven diagnosis of diseases with so-far unknown morphological manifestations.


A FRET-based method for monitoring structural transitions in protein self-organization.

  • Qi Wan‎ et al.
  • Cell reports methods‎
  • 2022‎

Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.


Optimization and validation of CAR transduction into human primary NK cells using CRISPR and AAV.

  • Meisam Naeimi Kararoudi‎ et al.
  • Cell reports methods‎
  • 2022‎

Human primary natural killer (NK) cells are being widely advanced for cancer immunotherapy. However, methods for gene editing of these cells have suffered low transduction rates, high cell death, and loss of transgene expression after expansion. Here, we developed a highly efficient method for site-specific gene insertion in NK cells using CRISPR (Cas9/RNP) and AAVs. We compared AAV vectors designed to mediate gene insertion by different DNA repair mechanisms, homology arm lengths, and virus concentrations. We then validated the method for site-directed gene insertion of CD33-specific CARs into primary human NK cells. CAR transduction was efficient, its expression remained stable after expansion, and it improved efficacy against AML targets.


An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4+ T cells.

  • Asgar Ansari‎ et al.
  • Cell reports methods‎
  • 2022‎

The B cell "help" function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B cocultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing M. tuberculosis (Mtb), we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells and that similar effects are achieved by supplementing cocultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and stem cell growth factor (SCGF)/C-type lectin domain family 11 member A (CLEC11A), but this alone does not fully recapitulate the effects of monocyte supplementation. Importantly, we demonstrate improved activation and immunological output of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory CD4+ T-B cell cocultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example, after vaccination or natural infection.


BTBBCL6 dimers as building blocks for reversible drug-induced protein oligomerization.

  • Lena Nitsch‎ et al.
  • Cell reports methods‎
  • 2022‎

Here, we characterize the BTB domain of the transcription factor BCL6 (BTBBCL6) as a small-molecule-controlled, reversible oligomerization switch, which oligomerizes upon BI-3802 treatment and de-oligomerizes upon addition of BI-3812. We show that the magnitude of oligomerization can be controlled in vitro by BI-3802 concentration and exposure time. In cellular models, exposure to BI-3802/BI-3812 can drive multiple cycles of foci formation consisting of BTBBCL6 fused to EGFP, which are not degraded due to the lack of a degron. We generated an epidermal growth factor receptor (EGFR)-BTBBCL6 fusion. Treatment with BI-3802, as an ON switch, induced EGFR-BTBBCL6 phosphorylation and activation of downstream effectors, which could in part be reversed by the addition of BI-3812, as an OFF switch. Finally, BI-3802-induced oligomerization of the EGFR-BTBBCL6 fusion enhanced proliferation of an EGF-dependent cell line in absence of EGF. These results demonstrate the successful application of small-molecule-induced, reversible oligomerization as a switch for synthetic biology.


Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response.

  • Ivan Doykov‎ et al.
  • Cell reports methods‎
  • 2022‎

Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: