Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome.

  • Qiang Qin‎ et al.
  • Cell reports‎
  • 2021‎

Adipose tissue macrophages (ATMs) regulate the occurrence of obesity and its related diseases. Here, we found that serine/threonine protein kinase 24 (Stk24) expression is downregulated significantly in ATMs in obese subjects or obese subjects with type 2 diabetes and mice fed a high-fat diet (HFD). We further identified that glucolipotoxicity downregulated Stk24 expression in ATMs. Stk24-deficient mice develop severe HFD-induced metabolic disorders and insulin insensitivity. Mechanistically, Stk24 intervenes in NLRP3 inflammasome assembly in ATMs by associating directly with NLRP3, decreasing interleukin-1β (IL-1β) secretion. Accordingly, Stk24 deficiency in the hematopoietic system promotes NLRP3 inflammasome activation, which contributes to exacerbation of metabolic disorders. Intriguingly, Stk24 expression correlates negatively with body mass index (BMI) and the levels of glucose, cholesterol, triglycerides, and low-density lipoprotein in human subjects. These findings provide insights into the function and clinical implications of Stk24 in obesity-mediated metabolic disorders.


Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses.

  • Meixue Duan‎ et al.
  • Cell reports‎
  • 2023‎

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.


Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation.

  • Colin Valet‎ et al.
  • Cell reports‎
  • 2020‎

Megakaryocytes (MKs) come from a complex process of hematopoietic progenitor maturation within the bone marrow that gives rise to de novo circulating platelets. Bone marrow microenvironment contains a large number of adipocytes with a still ill-defined role. This study aims to analyze the influence of adipocytes and increased medullar adiposity in megakaryopoiesis. An in vivo increased medullar adiposity in mice caused by high-fat-diet-induced obesity is associated to an enhanced MK maturation and proplatelet formation. In vitro co-culture of adipocytes with bone marrow hematopoietic progenitors shows that delipidation of adipocytes directly supports MK maturation by enhancing polyploidization, amplifying the demarcation membrane system, and accelerating proplatelet formation. This direct crosstalk between adipocytes and MKs occurs through adipocyte fatty acid transfer to MKs involving CD36 to reinforce megakaryocytic maturation. Thus, these findings unveil an influence of adiposity on MK homeostasis based on a dialogue between adipocytes and MKs.


Modulation of the cell membrane lipid milieu by peroxisomal β-oxidation induces Rho1 signaling to trigger inflammatory responses.

  • Anu S Nath‎ et al.
  • Cell reports‎
  • 2022‎

Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.


Adipose stem cells control obesity-induced T cell infiltration into adipose tissue.

  • Xiyan Liao‎ et al.
  • Cell reports‎
  • 2024‎

T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.


Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring.

  • Michael J Nash‎ et al.
  • Cell reports‎
  • 2023‎

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism.

  • Flora Magnotti‎ et al.
  • Cell reports‎
  • 2022‎

The pyrin inflammasome acts as a guard of RhoA GTPases and is central to immune defenses against RhoA-manipulating pathogens. Pyrin activation proceeds in two steps. Yet, the second step is still poorly understood. Using cells constitutively activated for the pyrin step 1, a chemical screen identifies etiocholanolone and pregnanolone, two catabolites of testosterone and progesterone, acting at low concentrations as specific step 2 activators. High concentrations of these metabolites fully and rapidly activate pyrin, in a human specific, B30.2 domain-dependent manner and without inhibiting RhoA. Mutations in MEFV, encoding pyrin, cause two distinct autoinflammatory diseases pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF). Monocytes from PAAND patients, and to a lower extent from FMF patients, display increased responses to these metabolites. This study identifies an unconventional pyrin activation mechanism, indicates that endogenous steroid catabolites can drive autoinflammation, through the pyrin inflammasome, and explains the "steroid fever" described in the late 1950s upon steroid injection in humans.


Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages.

  • Jan Van den Bossche‎ et al.
  • Cell reports‎
  • 2016‎

Macrophages are innate immune cells that adopt diverse activation states in response to their microenvironment. Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is of high interest. Here, we find that mouse and human M1 macrophages fail to convert into M2 cells upon IL-4 exposure in vitro and in vivo. In sharp contrast, M2 macrophages are more plastic and readily repolarized into an inflammatory M1 state. We identify M1-associated inhibition of mitochondrial oxidative phosphorylation as the factor responsible for preventing M1→M2 repolarization. Inhibiting nitric oxide production, a key effector molecule in M1 cells, dampens the decline in mitochondrial function to improve metabolic and phenotypic reprogramming to M2 macrophages. Thus, inflammatory macrophage activation blunts oxidative phosphorylation, thereby preventing repolarization. Therapeutically restoring mitochondrial function might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control disease.


Identification of Modifier Genes in a Mouse Model of Gaucher Disease.

  • Andrés D Klein‎ et al.
  • Cell reports‎
  • 2016‎

Diseases caused by single-gene mutations can display substantial phenotypic variability, which may be due to genetic, environmental, or epigenetic modifiers. Here, we induce Gaucher disease (GD), a rare inherited metabolic disorder, by injecting 15 inbred mouse strains with a low dose of a chemical inhibitor of acid β-glucosidase, the enzyme defective in GD. Different mouse strains exhibit widely different lifespans, which is unrelated to levels of acid β-glucosidase's substrate accumulation. Genome-wide association reveals a number of candidate risk loci, including a marker within Grin2b, which in combination with another marker allows us to predict the lifespan of additional mouse strains. An antagonist of the NMDA receptor (encoded by Grin2b) significantly increases the lifespan of GD mice that would otherwise have lived for a short time. Our data identify putative modifier genes that may be involved in determining GD severity, which might help elucidate phenotypic variability between patients with similar GD mutations.


mTOR Inhibition Subdues Milk Disorder Caused by Maternal VLDLR Loss.

  • HoangDinh Huynh‎ et al.
  • Cell reports‎
  • 2017‎

It is unknown whether and how very-low density lipoprotein receptors (VLDLRs) impact skeletal homeostasis. Here, we report that maternal and offspring VLDLRs play opposite roles in osteoclastogenesis and bone resorption. VLDLR deletion in the offspring augments osteoclast differentiation by enhancing RANKL signaling, leading to osteoporosis. In contrast, VLDLR deletion in the mother alters milk metabolism, which inhibits osteoclast differentiation and causes osteopetrosis in the offspring. The maternal effects are dominant. VLDLR-null lactating mammary gland exhibits higher mTORC1 signaling and cholesterol biosynthesis. Pharmacological probing reveals that rapamycin, but not statin, treatment of the VLDLR-null mother can prevent both the low bone resorption and our previously described inflammatory fur loss in their offspring. Genetic rescue reveals that maternal mTORC1 attenuation in adipocytes, but not in myeloid cells, prevents offspring osteopetrosis and fur loss. Our studies uncover functions of VLDLR and mTORC1 in lactation and osteoclastogenesis, illuminating key mechanisms and therapeutic insights for bone and metabolic diseases.


Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism.

  • Duco Steven Koenis‎ et al.
  • Cell reports‎
  • 2018‎

Activation of macrophages by inflammatory stimuli induces reprogramming of mitochondrial metabolism to support the production of pro-inflammatory cytokines and nitric oxide. Hallmarks of this metabolic rewiring are downregulation of α-ketoglutarate formation by isocitrate dehydrogenase (IDH) and accumulation of glutamine-derived succinate, which enhances the inflammatory response via the activity of succinate dehydrogenase (SDH). Here, we identify the nuclear receptor Nur77 (Nr4a1) as a key upstream transcriptional regulator of this pro-inflammatory metabolic switch in macrophages. Nur77-deficient macrophages fail to downregulate IDH expression and accumulate higher levels of succinate and other TCA cycle-derived metabolites in response to inflammatory stimulation in a glutamine-independent manner. Consequently, these macrophages produce more nitric oxide and pro-inflammatory cytokines in an SDH-dependent manner. In vivo, bone marrow Nur77 deficiency exacerbates atherosclerosis development and leads to increased circulating succinate levels. In summary, Nur77 induces an anti-inflammatory metabolic state in macrophages that protects against chronic inflammatory diseases such as atherosclerosis.


m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity.

  • Yanqin Qin‎ et al.
  • Cell reports‎
  • 2021‎

N6-methyladenosine (m6A) RNA modification is a fundamental determinant of mRNA metabolism, but its role in innate immunity-driven non-alcoholic fatty liver disease (NAFLD) and obesity is not known. Here, we show that myeloid lineage-restricted deletion of the m6A "writer" protein Methyltransferase Like 3 (METTL3) prevents age-related and diet-induced development of NAFLD and obesity in mice with improved inflammatory and metabolic phenotypes. Mechanistically, loss of METTL3 results in the differential expression of multiple mRNA transcripts marked with m6A, with a notable increase of DNA Damage Inducible Transcript 4 (DDIT4) mRNA level. In METTL3-deficient macrophages, there is a significant downregulation of mammalian target of rapamycin (mTOR) and nuclear factor κB (NF-κB) pathway activity in response to cellular stress and cytokine stimulation, which can be restored by knockdown of DDIT4. Taken together, our findings identify the contribution of METTL3-mediated m6A modification of Ddit4 mRNA to macrophage metabolic reprogramming in NAFLD and obesity.


Enhanced Renewal of Erythroid Progenitors in Myelodysplastic Anemia by Peripheral Serotonin.

  • David Sibon‎ et al.
  • Cell reports‎
  • 2019‎

Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin.


Mechanical Stiffness Controls Dendritic Cell Metabolism and Function.

  • Mainak Chakraborty‎ et al.
  • Cell reports‎
  • 2021‎

Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.


The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism.

  • Jonathan Matalonga‎ et al.
  • Cell reports‎
  • 2017‎

Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.


Chronic stress primes innate immune responses in mice and humans.

  • Tessa J Barrett‎ et al.
  • Cell reports‎
  • 2021‎

Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.


PARP-inhibition reprograms macrophages toward an anti-tumor phenotype.

  • Lin Wang‎ et al.
  • Cell reports‎
  • 2022‎

Poly(ADP)ribosylation inhibitors (PARPis) are toxic to cancer cells with homologous recombination (HR) deficiency but not to HR-proficient cells in the tumor microenvironment (TME), including tumor-associated macrophages (TAMs). As TAMs can promote or inhibit tumor growth, we set out to examine the effects of PARP inhibition on TAMs in BRCA1-related breast cancer (BC). The PARPi olaparib causes reprogramming of TAMs toward higher cytotoxicity and phagocytosis. A PARPi-related surge in NAD+ increases glycolysis, blunts oxidative phosphorylation, and induces reverse mitochondrial electron transport (RET) with an increase in reactive oxygen species (ROS) and transcriptional reprogramming. This reprogramming occurs in the absence or presence of PARP1 or PARP2 and is partially recapitulated by addition of NAD derivative methyl-nicotinamide (MNA). In vivo and ex vivo, the effect of olaparib on TAMs contributes to the anti-tumor efficacy of the PARPi. In vivo blockade of the "don't-eat-me signal" with CD47 antibodies in combination with olaparib improves outcomes in a BRCA1-related BC model.


The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence.

  • Sabrina Jenull‎ et al.
  • Cell reports‎
  • 2021‎

Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: