Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Crystal structure of the C-terminal domain of Bacillus subtilis GabR reveals a closed conformation by γ-aminobutyric acid binding, inducing transcriptional activation.

  • Seong Ah Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Bacillus subtilis GabR (BsGabR) is involved in the γ-aminobutyric acid (GABA) catabolism as a transcriptional regulator, consisting of an N-terminal helix-turn-helix DNA-binding domain and a C-terminal aminotransferase-like (AT-like) domain. Research on the C-terminal AT-like domain of BsGabR (BsGabR-CTD) has focused on the interaction with GABA as an effector, but most its functional details remain unclear. To understand the underlying mechanism, we report the crystal structure of BsGabR-CTD in complex with pyridoxal 5'-phosphate (PLP) and GABA at 2.0 Å resolution. The structure of ligand-bound BsGabR-CTD revealed two distinct monomeric states in a homodimer. One subunit is a closed-form containing the PLP-GABA adduct, and the other subunit is a PLP-bound open-form. Our structural studies provide a detailed mechanism indicating that the open-to-closed transition by the binding of GABA induces the conformational rearrangement of BsGabR-CTD, which may trigger the activation of transcription.


Impact of G-quadruplex loop conformation in the PITX1 mRNA on protein and small molecule interaction.

  • Emmanuel O Ariyo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Intramolecular G-quadruplexes (G4s) are G-rich nucleic acid structures that fold back on themselves via interrupting loops to create stacked planar G-tetrads, in which four guanine bases associate via Hoogsteen hydrogen bonding. The G4 structure is further stabilized by monovalent cations centered between the stacked tetrads. The G-tetrad face on the top and bottom planes of G4s are often the site of interaction with proteins and small molecules. To investigate the potential impact of interrupting loops on both G4 structure and interaction with proteins/small molecules, we characterized a specific G4 from the 3'-UTR of PITX1 mRNA that contains loops of 6 nucleotides using biophysical approaches. We then introduced mutations to specific loops to determine the impact on G4 structure and the ability to interact with both proteins and a G4-specific ligand. Our results suggest that mutation of a specific loop both affects the global G4 structure and impacts the ability to interact with a G4 binding protein and small molecule ligand.


Mutation of leucine 20 causes a change of local conformation indirectly impairing the DNA binding of SP_0782 from Streptococcus pneumoniae.

  • Yixuan Gong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

SP_0782 from Streptococcus pneumoniae is a dimeric PC4-like protein binding single-stranded DNA (ssDNA), and is potentially involved in maintenance of genome stability and natural transformation. SP_0782 binds with different lengths of ssDNA in various patterns through accommodating nucleotides differently in its two DNA-binding regions (DBRs). Here, we report the characterization of a novel site, leucine 20 (L20), which is not located in the DBRs but impairs the DNA binding when mutated to alanine (L20A). The L20A mutation markedly reduced the DNA-binding affinity of SP_0782 for ssDNA dT19G1, and affected the formation of high-order SP_0782:dT19G1 complexes. The side chain of L20 shows interactions with several residues at the backside of the DBRs in apo SP_0782 structure, and the L20A mutation led to a change of circular dichroism (CD) spectrum and broad chemical shift perturbations (CSPs) in NMR spectrum compared with the wild type. The most affected residues in NMR spectrum included F39 and R49 located in DBR2, as well as K60 in DBR1, which was suggested to be important for cooperative binding of ssDNA by the two subunits in SP_0782 dimer. Thus, the L20A mutation caused a local conformational change of SP_0782, which exerted an indirect effect on the DNA-binding interface and therefore impaired the affinity for ssDNA dT19G1. Interestingly, this L20 site is conserved in bacterial but not eukaryotic PC4-like proteins, suggesting an evolutionary divergence. This study provides an insight into the structure-function relationship of SP_0782, and an amino-acid site probably targeted for inhibiting bacteria selectively.


Novel functional characterization of the insecticidal protein Vip3Aa on DNA binding activity.

  • Su-Hyang Yoo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

The toxicity of Vip3Aa protein on insect pests is known, however, it remains unclear underlying the structure-dependent molecular function of the Vip3Aa protein. To investigate the novel function of the Vip3Aa protein, we isolated recombinant Vip3Aa protein. The recombinant Vip3Aa protein was mostly present as oligomeric form depending on the hydrophobic amino acid residue. We found that the oligomeric Vip3Aa protein specifically binds to nucleic acids, including single-stranded (ssDNA) and double-stranded DNA (dsDNA). The conformational and functional domains of the Vip3Aa protein were confirmed by separating the Vip3Aa full and Vip3Aa active (actVip3Aa) forms using size exclusion chromatography and nucleic acid binding activity. Interestingly, actVip3Aa protein had a conformational change and decreased DNA binding activity compared to that of the Vip3Aa full, suggesting that N-terminal part of the Vip3Aa play an important role in maintaining the conformation and nucleic acid binding activity. These studies highlight novel functional characterization of the insecticidal protein Vip3Aa on DNA binding activity and may be attributed to the protection of DNA from the damage caused by oxidative stress.


Bacteriophage T4 alpha-glucosyltransferase: a novel interaction with gp45 and aspects of the catalytic mechanism.

  • Nicole Sommer‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

The bacteriophage T4 alpha- and beta-glucosyltransferases (AGT and BGT) catalyse the transfer of glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine of T4 DNA in an alpha- and beta-conformation, respectively. Following the 3D structure of BGT and a secondary structure alignment of AGT and BGT, we performed a site-directed mutagenesis of AGT. A two-domain structure was deduced, with an open substrate-free and a closed substrate-bound conformation. We also identified specific amino acids involved in DNA binding. The identification of a protein-protein interaction of AGT and gp45 which is a part of the T4 replication complex supports the idea that T4 DNA is alpha-glucosylated immediately after synthesis. BGT then glucosylates those hydroxymethyl cytosines not previously served by AGT.


A testis-specific and testis developmentally regulated tumor protein D52 (TPD52)-like protein TPD52L3/hD55 interacts with TPD52 family proteins.

  • Qinhong Cao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

Tumor protein D52-like proteins (TPD52) are small coiled-coil motif bearing proteins that were first identified in breast cancer. TPD52 and related proteins have been implicated in cell proliferation, apoptosis, and vesicle trafficking. To date, three human TPD52 members had been identified, named hD52 (TPD52), hD53 (TPD52L1), and hD54 (TPD52L2). The most important characteristic of the protein family is a highly conserved coiled-coil motif that is required for homo- and heteromeric interaction with other TPD52-like proteins. Herein, we identified a novel TPD52-like sequence (TPD52L3, or hD55) in human testis using cDNA microarray. Sequence analysis of the deduced protein suggests that hD55 contains a coiled-coil motif and is highly conserved compared with other TPD52-like sequences. Yeast two-hybrid and GST pull-down assays revealed that hD55 interacts with hD52, hD53, hD54, and itself. cDNA microarray detection found that hD55 was expressed at 5.6-fold higher levels in adult testis than in fetal testis. Additionally, the expression profile shows that hD55 is testis-specific, indicating a potential role for hD55 in testis development and spermatogenesis.


Roles of the beta subunit hinge domain in ATP synthase F(1) sector: hydrophobic network formed by introduced betaPhe174 inhibits subunit rotation.

  • Mayumi Nakanishi-Matsui‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

The ATP synthase beta subunit hinge domain (betaPhe148 approximately betaGly186, P-loop/alpha-helixB/loop/beta-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F(1) with the betaSer174 to Phe mutation in the domain lowered the gamma subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F(1) sector. Stochastic fluctuation and a key domain of the beta subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the betaMet159, betaIle163, and betaAla167 residues of the beta subunit are involved together with the mutant betaPhe174. The network is expected to stabilize the conformation of beta(DP) (nucleotide-bound form of the beta subunit), resulting in increased activation energy for transition to beta(E) (empty beta subunit). The modeling further predicts that replacement of betaMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of betaS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the beta subunit hinge domain is pertinent for the rotational catalysis.


Conformational divergence in the HA-33/HA-17 trimer of serotype C and D botulinum toxin complex.

  • Yoshimasa Sagane‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Clostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose. Here, we compared the three-dimensional structures of the galactose-binding HA-33 and HA-33/HA-17 trimers produced by the C-Yoichi strain. Comparisons of serotype C/D HA-33 sequences reveal a variable region with relatively low sequence similarity across the C. botulinum strains; the variability of this region may influence the manner of sugar-recognition by HA-33. Crystal structures of sialic acid- and galactose-binding HA-33 are broadly similar in appearance. However, small-angle X-ray scattering revealed distinct solution structures for HA-33/HA-17 trimers. A structural change in the C-terminal variable region of HA-33 might cause a dramatic shift in the conformation and sugar-recognition mode of HA-33/HA-17 trimer.


Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses.

  • Claudio M Costa-Neto‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance.


Structure of Cu/Zn superoxide dismutase from the heavy-metal-tolerant yeast Cryptococcus liquefaciens strain N6.

  • Aik-Hong Teh‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

The deep-sea yeast Cryptococcus liquefaciens strain N6 shows high tolerance towards heavy metals, and can grow in the presence of high concentrations of copper ions. Enzymatic analysis indicated that copper ions induced the Cu/Zn superoxide dismutase activity of strain N6 (Cl-SOD1). In this study, the 1.2A resolution crystal structure of Cl-SOD1 has revealed several significant residue substitutions compared to the other Cu/Zn SODs. In the electrostatic loop, notably, His135 and Pro136 replace the well-conserved linear residues, while Thr133 substitutes a highly conserved glycine. The electrostatic loop has been shown to be involved in the copper uptake process, and these substitutions have caused an inward dragging of the turn region of the loop. As the introduction of proline and abolishment of glycine decrease loop flexibility, this structural reorganization may have helped stabilize the loop conformation, possibly resulting in more efficient copper uptake and a more stabilized copper-bound form.


Molecular characterization of a novel His333Arg variant of human protoporphyrinogen oxidase IX.

  • Zora Novakova‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Variegate porphyria is caused by mutations in the protoporphyrinogen oxidase IX (PPOX, EC 1.3.3.4) gene, resulting in reduced overall enzymatic activity of PPOX in human tissues. Recently, we have identified the His333Arg mutation in the PPOX protein (PPOX(H333R)) as a putative founder mutation in the Moroccan Jewish population. Herein we report the molecular characterization of PPOX(H333R) in vitro and in cells. Purified recombinant PPOX(H333R) did not show any appreciable enzymatic activity in vitro, corroborating the clinical findings. Biophysical experiments and molecular modeling revealed that PPOX(H333R) is not folded properly and fails to adopt its native functional three-dimensional conformation due to steric clashes in the vicinity of the active site of the enzyme. On the other hand, PPOX(H333R) subcellular distribution, as evaluated by live-cell confocal microscopy, is unimpaired suggesting that the functional three-dimensional fold is not required for efficient transport of the polypeptide chain into mitochondria. Overall, the data presented here provide molecular underpinnings of the pathogenicity of PPOX(H333R) and might serve as a blueprint for deciphering whether a given PPOX variant represents a disease-causing mutation.


Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss: A whole mitochondrial genome screening.

  • Olfa Alila-Fersi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to dysfunction of the mitochondrial respiratory chain, which is responsible for the generation of most cellular energy. Because cardiac muscles are one of the high energy demanding tissues, mitochondrial cardiomyopathies is one of the most frequent mitochondria disorders. Mitochondrial cardiomyopathy has been associated with several point mutations of mtDNA in both genes encoded mitochondrial proteins and mitochondrial tRNA and rRNA. We reported here the first description of mutations in MT-ATP6 gene in two patients with clinical features of dilated mitochondrial cardiomyopathy. The mutational analysis of the whole mitochondrial DNA revealed the presence of m.1555A>G mutation in MT-RNR1 gene associated to the m.8527A>G (p.M>V) and the m.8392C>T (p.136P>S) variations in the mitochondrial MT-ATP6 gene in patient1 and his family members with variable phenotype including hearing impairment. The second patient with isolated mitochondrial cardiomyopathy presented the m.8605C>T (p.27P>S) mutation in the MT-ATP6 gene. The three mutations p.M1V, p.P27S and p.P136S detected in MT-ATP6 affected well conserved residues of the mitochondrial protein ATPase 6. In addition, the substitution of proline residue at position 27 and 136 effect hydrophobicity and structure flexibility conformation of the protein.


Alpha-helical domain from IL-8 of salmonids: Mechanism of action and identification of a novel antimicrobial function.

  • Paula A Santana‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

In this work, the potential antimicrobial role and mechanism of action of α-helix domain of trout and salmon IL-8 against Eschericia coli, Pseudomonas aeruginosa and Staphylococcus aureus was investigated. By an in silico analysis of the primary structure of IL-8 from Oncorhynchus mykiss and salmo salar, it was evidenced that γ-core motif was present, as in the vast majority of kinocidins. The α-helix domain of IL-8 (αIL-8) was synthesized by solid phase peptide synthesis and showed a tendency to form an α-helix conformation, as revealed by circular dichroism. Additionally, it was demonstrated that αIL-8 from both species showed antimicrobial activity against E. coli, P. aeruginosa and S. aureus. Membrane permeabilization and co-localization assay, as well as scanning electron microscopy, showed that these peptides were accumulated on the cell surface and in the cytoplasm, suggesting that they were capable of permeabilizing and disrupt the bacterial membranes and interact with cytoplasmic components. Our results represent the first analysis on the antimicrobial function of IL-8-derived peptide from salmonids.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: